
Watching the Watchers: Nonce-based Inverse
Surveillance to Remotely Detect Monitoring

Laura M. Roberts∗†, David Plonka∗
∗Akamai Technologies
†Princeton University

Abstract—Internet users and service providers do not often
know when traffic is being watched but desire a way to determine
when, where, and by whom. We present NOISE, the Nonce Obser-
vatory for Inverse Surveillance of Eavesdroppers, a method and
system that detects monitoring by disseminating nonces—unique,
pseudorandom values—in traffic and seeing if they are acted
upon unexpectedly, indicating that the nonce-laden traffic is being
monitored. Specifically, we embed 64-bit nonces innocuously into
IPv6 addresses and disseminate these nonces Internet-wide using
a modified traceroute-like tool that makes each outbound probe’s
source address unique. We continually monitor for subsequent
nonce propagation, i.e., activity or interest involving these nonces,
e.g., via packet capture on our system’s infrastructure. Across
three experiments and four months, NOISE detects monitoring
more than 200k times, ostensibly in 268 networks, for probes
destined for 437 networks. Our results reveal: (a) data collection
for security incident handling, (b) traffic information being
shared with third parties, and (c) eavesdropping in or near a
large commercial peering exchange.

Index Terms—security, networks, monitoring, IPv6, DNS

I. INTRODUCTION

Internet users and services exchange content worldwide
every day. This traffic traverses routers and exchange points
far and wide, but neither those users nor service providers
typically know who, if anyone, is watching that traffic. In
today’s Internet, the community has deemed pervasive mon-
itoring to be a threat [1]. Knowledge of such monitoring is
of significant interest because surveillance: (a) can threaten
quality of service, e.g., when surveillance aids reconnaissance
prior to intrusions, thefts of data, or denial-of-service (DoS)
attacks; and (b) can threaten the privacy of end-users, risking
the reputations of users and service providers when private
information is exposed. Thus, the goal of our work is to
detect traffic monitoring, Internet-wide, detecting monitoring
organizations and monitoring systems, e.g., network firewalls,
email filters, and even wiretaps. We also want to know where
they are, be it on network links or edges, and to classify such
systems when they are of a common type. Furthermore, we
want to detect subsequent data sharing, e.g., when information
about traffic is shared with third parties, because this exacer-
bates challenges to privacy.

Discovery and disclosure of Internet monitoring by nation
states [2] and other institutions [3], [4] have alerted the
community to the presence of such surveillance, and one
might expect Internet surveillance not be hard to find by those
willing to look. In this work we aim to answer the question,

“Can we build a system that remotely detects monitoring?”
To that end, we introduce the Nonce Observatory for Inverse
Surveillance of Eavesdroppers (NOISE), a method and system
to detect monitoring by disseminating nonces, which are
single-use, pseudorandom values, and stealthily listening for
their subsequent propagation.

First, we actively disseminate nonces, i.e., we initially trans-
mit them as identifiers in Internet traffic (e.g., as a packet’s
IPv6 source address in an active measurement survey), and
then we passively listen for a surveillant to propagate or
convey a nonce to somewhere unusual, e.g., to retransmit it
in a response packet or use it to form a reverse DNS query.
Because the nonces are unique, we are able to correlate their
dissemination with any subsequent propagations. And because
we disseminate nonces in hop-limited packets via an enhanced
traceroute, we glean topological information on paths that
nonces traverse, helping to locate surveillants when detected.
Although the technique is not IPv6-specific, our current system
detects monitoring of only IPv6 traffic with the expectation
that anyone who monitors IPv6 almost certainly monitors
IPv4 as well. NOISE reports monitoring without regard to
legitimacy or intent, e.g., monitoring that represents security
best practices at or near hosts and also eavesdropping, i.e.,
monitoring in the middle of the communication path.

Our contributions comprise both methods and results: (i) a
practical inverse surveillance method to detect Internet traffic
monitors; (ii) a modified traceroute that can show when probes
propagate further than shown by traditional traceroutes; (iii)
detection of traffic monitoring in 268 networks; (iv) detection
of eavesdropping in a commercial Internet exchange; (v) detec-
tion of networks sharing traffic information with third parties,
e.g., public DNS services; (vi) detection of automated secu-
rity practices including: forensic DNS queries, logging and
retention of traffic records, and aggressive counter-probes; and
(vii) results validation using ground truth from interview with
experts on three networks where monitoring was detected.

II. BACKGROUND AND RELATED WORK

Our system implements a form of inverse surveillance [5]
but focuses on the detection and monitoring of surveillants in
the Internet rather than in the “real world.” In contrast, Mann
coined the term “sousveillance” [6] which focuses on using
technology such as wearable devices to enable data collection,
e.g., citizens recording video of surveillants.978-3-903176-27-0 © 2020 IFIP

In our inverse surveillance of Internet traffic, we watch for
both interception that is lawful (LI) and potentially unlawful,
i.e., regardless of purpose, whether it is (a) likely innocuous,
such as current best practice monitoring of one’s own network
for performance or security, or (b) potentially nefarious, such
as a malicious party or nation state surreptitiously monitoring
traffic at a host or within an IXP. While much prior engineering
and research work has to do with surveillance in networks, we
know of few that focus on surveilling the surveillants [7].

Prior works [8]–[12] inform our nonce-based detection, e.g.,
nonces used in DNS labels or “honeytokens” in data objects.
There are prior works that relate to ours in a number of areas.

First, our work is not the first to remotely detect traffic
monitoring. Some prior works [13], [14] detect types of
censorship that entailed monitoring. Instead, we develop a
technique having detection of surveillance as its primary goal.

Second, because our method requires dissemination of
nonce-laden identifiers, we leverage existing means to do
so. Given that locating surveillance points is also our goal,
we choose to augment yarrp [15], [16], a high-performance
traceroute-like tool, thus simultaneously discovering the topol-
ogy in which surveillance is taking place, if and when detected.
In this, we are also inspired by TCP Sidecar [17] to piggyback
new measurements atop existing traffic.

Third, our method detects the propagation of nonce-laden
identifiers or nonces themselves and identifies candidate net-
works that observe and propagate them. In this way, it bears
some similarities to efforts in validating and verifying network
paths [18] or routes [19]. Given that practical path validation
does not exist today, we instead explore whether it is possible
to detect unexpected divergence of traffic from its expected
path, such as an eavesdropper passing information to a third
party that is neither the source nor intended destination of the
associated traffic. As in the evaluation of Alibi Routing [20],
we attempt to geolocate [21] where our traffic, or information
about that traffic, may have unexpectedly traveled.

Last, because our detection of surveillance depends on op-
portunity to witness suspicious actions of surveillants that im-
ply their having observed our traffic, our method is somewhat
inspired by the notion of opportunistic measurements [22].

III. METHOD

Aiming to remotely detect monitoring, we realize a system
having two primary operations: (a) active conveyance or
dissemination of nonces to distant destinations by placing them
in transport header fields of traffic we transmit in periodic
measurement campaigns and (b) passive observation, listening
for reactions to that nonce-laden traffic that propagate back to
our system’s inverse monitoring components.

1) Active components: NOISE disseminates nonces via
traceroute-like surveys, essentially masquerading as fairly
common active topology measurements. First, NOISE gener-
ates nonces en masse and embeds them as interface identifiers
(IID), e.g., some lower 64 bits of an IPv6 address, resulting
in a batch of “nonced” (nonce-laden) IPv6 addresses. For ex-
ample: 2001:db8::dead:beef:f00d:cafe, where the

portion shown in bold is the nonce and the top 64-bit network
identifier is dictated by the prefix of NOISE’s address block,
an IPv6 /36 prefix (having 292 total addresses) never before
used and dedicated solely to our experiments. Specifically,
NOISE nonces are a 64-bit value, e.g., a monotonically
increasing 64-bit counter, encrypted by the ChaCha20 stream
cipher algorithm [23], so the value is obscured and the nonce
unpredictable. If they were predictable or the encryption key
compromised, an adversary could craft and transmit valid
nonces they did not actually observe as the result of our
transmissions, misdirecting our analysis.

With our nonced IPv6 source addresses in hand, NOISE dis-
seminates them by running special traceroute-like campaigns.
In regular traceroute, probe packets having monotonically
increasing Time-to-Live values (TTL, also known as “Hop
Limit” in IPv6) are sent from the IP address of the source
host to the targets of interest. NOISE emits traceroute-like,
TTL-limited probes with crafted or forged source addresses
— one-time-use, nonce-laden source addresses — rather than
the host’s usual address. Given an incredibly large range of
possible nonce values, i.e., 64 bits, we can afford to place a
unique nonce in every probe packet that we emit. That is, every
single probe sent, each having a TTL value between 1 and a
maximum of 32, for example, has its own unique, nonced
source address. As with traditional traceoute, each probe’s
TTL limits the distance it travels (measured in router hops),
therefore limiting where, topologically, this unique nonced-
source address might be observed by a monitor.

In order to conduct our special traceroute campaigns, we
make a modified version of yarrp [15], a tool that performs
traceroutes in a pseudorandom, stateless way, allowing for fast,
Internet-scale measurements of topology. While the original
yarrp, like traditional traceroute, uses a single source IP
address on the localhost when emitting probe packets, our
modified yarrp uses a list of source addresses from a file
prepared in advance: one for each and every probe packet. In
NOISE yarrp campaigns, this list is comprised of millions of
nonce-laden source addresses that we generate. Running yarrp
on a host dedicated to NOISE, we trace from these nonced
IPv6 source addresses to the approx. 15.2M target addresses
used in prior work [16], to the best of our knowledge,
representing the largest IPv6 topology surveys to date.

Naturally, the question arises as to how NOISE can collect
responses to our traceroute probes given that the source
addresses are forged and not those of the NOISE source
host itself. We do this by actively restricting forged source
addresses to the 292 addresses in NOISE’s address block,
a /36 prefix, which is under our complete control, and by
forwarding all packets destined to addresses within that block
to the NOISE source host. This is accomplished in router
configuration, i.e., using a “static route” on the source host’s
gateway router under our control, which then propagates
NOISE’s prefix into routing tables globally, making NOISE
an active Internet sink [24].

2) Passive components: While disseminating nonces via
yarrp campaigns and on a continuously ongoing basis after-

wards, NOISE listens to see who or what reacts with interest
to our nonced source addresses. NOISE captures all packets
destined for its address block of all possible nonced source
addresses. So the arrival of an unexpected packet destined for
a nonced address, e.g., arrival of a packet that is not an ICMP
Error message (from a router) but having a source address that
was not a yarrp target, may represent interest by a monitor
given that it must have observed the nonced address to have
used it subsequently as a destination.

NOISE also listens for DNS backscatter. Experience and
prior work [25] show that a common reaction to unsolicited
traffic or probes, e.g., by firewalls, is to perform a “re-
verse” DNS query (ip6.arpa. PTR query in IPv6) on the
source address. NOISE assumes a reverse query for one of
its unpredictable nonced source addresses is an expression
of “curiosity,” e.g., on the part of some monitor that must
have observed that nonced address. Any reverse queries not
carrying previously NOISE-disseminated nonces are easily
detected and disregarded. NOISE captures all DNS traffic seen
at its nameserver, exclusively dedicated as authoritative for
the project’s forward and reverse zones, e.g., reverse DNS
nameserver for NOISE’s IPv6 address block.

3) Overview: NOISE comprises the following seven el-
ements and four types of detection (shown in bold), further
detailed in Section V: (1) a dedicated IPv6 address block
for our nonced source addresses; (2) a source host running
yarrp and tcpdump (enabling pcap detection); (3) a gateway
router under our control, routing outbound and inbound traffic;
(4) two project domain names exclusively for use solely by
the system; (5) a DNS nameserver running NSD on a VM,
authoritative for both (a) reverse queries in the dedicated
address block and (b) forward queries in two NOISE project
domains and running tcpdump (enabling rdns and fdns detec-
tion, respectively); (6) a web server running Apache2 hosting a
publicly-accessible NOISE web site having the domain name
that is the PTR name for all nonced source addresses and
describing our yarrp use and how to opt-out; and (7) access
to DNSDB, a passive DNS database, to determine when
queries for NOISE-specific nonced addresses or domain names
evidencing interest or monitoring were shared with this third
party commercial database (enabling pdns detection).

4) Limitations: An unavoidable limitation in any attempt
to remotely detect Internet surveillance is simply that surveil-
lants cannot be detected until they act. Secondly, while not
a limitation of nonce-based inverse surveillance in general,
our NOISE implementation has limited vectors by which it
disseminates nonces: we place nonces only in IPv6 source
addresses and transmit them from just a single source host in
a single address block. This limits the paths or trajectories that
nonces travel, constraining detection results to a topologically
limited set of networks and paths.

5) Ethical Considerations: Our active measurement sur-
vey has similar concerns to that of Beverly et al. [16]. We
likewise obtain permission from the network hosting our
vantage to perform the survey, limit traffic load by running
yarrp at 1k packets per second, avoid probing likely active

end host addresses, and provide a way for complainants to
contact us, e.g., via email as advertised both in an Internet
registry for our address block and on a web site (operated at the
PTR name for probe source addresses). In some experiments,
where we emit probes that masquerade as WWW traffic, there
is a potential risk that a surveillant or censor might incorrectly
suspect that destination hosts are participating in actual WWW
transactions with NOISE, like in prior works [13], [14]. We
claim only that we have no interest nor reasonable way to map
these addresses to individuals.

6) Experimental Evaluation: Our evaluation consists of
a series of experiments each comprising 16 contiguous yarrp
campaigns, largely having differing sets of destination ad-
dresses, mimicking those in Beverly et al. [16]. Herein, we
present and discuss the results of three such experiments
we’ve chosen to highlight which show how parameters such as
protocol, port number(s), and maximum TTL may influence
results. Table I shows, in bold, each experiment’s parameters
and the name by which we will refer to it.

In two experiments, NOISE probes masquerade as QUIC
traffic—UDP and port 443—with the hope that encrypted
WWW traffic is of interest to a monitor or surveillant. The
UDP:443c experiment sends UDP probes from nonced source
addresses to port 443 of our approx. 15.2M targets as if
the probes are from a QUIC client, having a random source
port number. The UDP:443s experiment sends UDP probes
with nonced source addresses from port 443 to random port
numbers of the same targets, as if the probes are from a QUIC
server. In the third, the Ping experiment, we send ICMPv6
Echo Request probes to the same targets, masquerading as a
typical topological measurement survey.

Because yarrp, by design, randomly orders probes (with
respect to TTL and destination), a given trace to a destination,
interspersed amongst millions, may take hours or days. It is
only complete after each TTL value, 1 through the maximum,
has been transmitted. Throughout our series of experiments,
we decreased max. TTL from 32 (initially) to 24 (when we
saw 32 was unnecessarily high) to 16 (employing yarrp’s
“fill mode,” [16] which goes beyond 16 as long as responses
continue to be received).

IV. DATA

Data resulting from performing the three experiments
is summarized in Table I. Note that because we use a
unique nonce in each trace packet transmitted (“xmitted”),
the “Nonces Xmitted” value is also the number of packets
transmitted across all traces to the destinations (addresses).
The 15.2M trace destinations (aka target addresses, of which
12.4M are unique) were chosen as in Beverly et al. [16],
which is the largest IPv6 trace survey of which we are aware.
We refer the interested reader to that paper for myriad target
selection details we have not repeated here.

In total, we emitted approx. one billion unique nonce-laden
packets destined for IPv6 networks worldwide. Recall that
on our trace source host and DNS server, we capture all
transmitted probes and all received packets of interest. We

TABLE I
EXPERIMENT PARAMETERS AND RESULTING DATA CHARACTERISTICS

Exp. Name Description Maximum TTL Dates, 2019 Traces Performed Dest. Addresses Nonces Xmitted Packets Captured
UDP:443c UDP probes sent TO port 443 32 Jan 4 –10 15.2M 12.4M 486.9M > 652M
UDP:443s UDP probes sent FROM port 443 24 Apr 10 –14 15.2M 12.4M 365.2M > 495M

Ping ICMPv6 Echo Request probes 16 + Apr 15 –18 15.2M 12.4M 311.5M > 396M

represent our voluminous trace and packet data in a graph
database, which proved valuable in analyzing and presenting
the following results.

V. RESULTS

From the overview in Section III, recall that NOISE has four
detection types: rdns (reverse DNS), pcap (packet capture),
pdns (passive DNS), and fdns (forward DNS). Each of these
represents a reaction in response to a probe packet, having
a nonced source address, being received or observed some
distance from the source, i.e., remotely monitored. An rdns
detection means a nonced address was reverse looked-up. A
pcap detection means an unexpected packet was received,
destined for a nonced source address in a probe we sent
(e.g., ping of a nonced address). A pdns detection means a
nonced address was found in a reverse DNS query recorded
in DNSDB, a commercial passive database. An fdns detection
means a forward DNS type A or AAAA query was performed
on the PTR name provided by the NOISE authoritative DNS
server as an answer to a prior reverse DNS query on a nonced
address. With this in mind, we present a “macroscopic” view
of our results followed by instances of detailed, “microscopic”
views and validation of our results.

A. Macroscopic View

Across three experiments, NOISE detects monitoring more
than 200k times, ostensibly in 268 networks, for probes
destined for 437 networks. When monitoring was detected,
it resulted from approx. 25k of the traces having target
destinations in a total of 55 countries. The top five were
the United States (9,099), Germany (3,805), Brazil (2,726),
Switzerland (1,850), and the United Kingdom (1,502). (Our
NOISE source host/vantage point is in the United States.)

In Figure 1, we show the counts of monitoring by detection
type and the amount of time to each type of detection. The
number of detections by type is in parentheses, along with the
number of peer hosts (unique remote addresses) that were the
source of the reaction, where applicable. There was a total of
approx. 247k reactions across all three experiments, and these
occurred in approx. 25k traces to approx. 17.4k targets. The
rdns detections were the most prevalent by far. Most detections
occurred within 24 hours. However, there are some outliers:
an rdns detection 113 days later in our UDP:443c experiment
and a pcap detection that happened 42 days later. We go into
detail about the pdns detections from experiment UDP:443s
that happened 18 days later in Section V-B.

We also examine which TTL values were associated with
the probes generating the most reactions or detections. Figure
2 summarizes our results for rdns, pcap, pdns, and fdns

1 10 100 1 k 10 k 100 k 1 M 10 M 100 M 1 G 10 G
Time, milliseconds

0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n
(C

D
F)

UDP:443c rdns (80k, 2.5k peers)
UDP:443s rdns (76k, 3.1k peers)
Ping rdns (55k, 2.3k peers)
UDP:443c pcap (7.6k, 70 peers)
UDP:443s pcap (6.2k, 62 peers)
Ping pcap (1.9k, 50 peers)
UDP:443c pdns (21 entries)
UDP:443s pdns (154 entries)

1ms 5ms 30ms100ms .5s 1s 3s5s 10s 30s1m 3m 10m 30m1h 2h 4h 12h1d 18d 43d 113d

0

0.2

0.4

0.6

0.8

1

Fig. 1. Times to detection of nonce propagation by type, per experiment.

0 1 2 3 4 5 6 7 8 9 10 1112 1314 151617181920 2122 2324 252627282930 3132
TTL

0

0.2

0.4

0.6

0.8

1

Pr
op

or
tio

n
(C

D
F)

UDP:443c rdns
UDP:443s rdns
Ping rdns
UDP:443c pcap
UDP:443s pcap
Ping pcap
UDP:443c pdns
UDP:443s pdns
UDP:443c fdns
UDP:443s fdns
Ping fdns

Fig. 2. Probe TTLs for detected nonce propagation by type, per experiment.

reactions. Reactions to probes having very low TTLs are
especially interesting (i.e., TTLs toward the left side of the
graph) because these likely represent monitoring in the middle,
rather than at the edge, in target networks. In Section V-B, we
present details for the leftmost instance, having TTL of only
2, where eavesdropping was detected.

Of special interest is monitoring by surveillants who are
ostensibly not in the target destination network of a trace
but rather somewhere in the middle. We report detection
counts in Table II where the reacting remote peer address
is identified by origin ASN, i.e., the Autonomous System
Number that originates a route via the global BGP (Border
Gateway Protocol) covering that remote peer address. With
rdns detections, we often see the origin ASN for the source of a
reverse query (for a nonced address) is not the origin ASN for
the trace’s target/destination address. Indeed, Table III shows

TABLE II
DETECTION COUNTS WHERE REMOTE PEER HOST’S ORIGIN ASN DIFFERS

FROM THAT OF TRACE TARGET DESTINATION

Exp. Name Detection # Reactions from Total # %
Type Diff. DstASN Reactions

UDP:443c
rdns 34,306 79,552 43.12
pcap 2,003 7,625 26.27
pdns n/a 21 n/a

UDP:443s
rdns 28,615 76,154 37.58
pcap 1,191 6,237 19.10
pdns n/a 154 n/a

Ping
rdns 29,812 54,663 54.54
pcap 248 1,869 13.27
pdns n/a 0 n/a

TABLE III
TOP 10 ORIGIN ASNS FOR REMOTE ADDRESSES PERFORMING PTR

QUERIES ON NONCED ADDRESSES (RDNS), IN ONE EXPERIMENT

Exp. Name # NS addrs ASN AS Name

UDP:443c

1,277 15169 Google LLC
175 13335 Cloudflare, Inc.
139 36692 OpenDNS, LLC
85 3356 Level 3 Parent, LLC
83 8075 Microsoft Corp.
63 9355 NICT
62 24940 HETZNER-AS
53 3462 HINET Data Comm. Business Group
38 4782 GSNET Data Comm. Business Group
34 42 WoodyNet

the top 10 origin ASNs of the client remote peer addresses
that performed the reverse DNS queries; note that they include
popular, public recursive DNS service providers. This strongly
suggests that monitors and surveillants propagate their queries
to third parties, resulting in some traffic information being
disseminated to them.

The pcap detections involving remote source addresses
having different origin ASN than that of the trace target des-
tination address are also suspicious. The top ASNs associated
with pcap reactions (not shown, to preserve those networks’
anonymity) have as many as 40 unique source addresses
sending packets to nonced addresses.

1

1

2

2

3

3

4

4

8

8

16

16

32

32

TTL

th
re

e
tra

ce
s resp. hop

dstASN hop
rdns
pdns
pcap

Fig. 3. A visualization of three UDP:443c experiment traces (to three targets)
showing evidence of monitoring. The horizontal axis is spatial by TTL, i.e.,
the distance increases from left to right.

In more detail next, we visualize trace-level results
in aggregate to see how monitoring detection varies by
experiment parameters and varies across the targets’ address
space and origin ASNs. To introduce this visualization
technique, Figure 3 shows three traces from experiment
UDP:443c that contain rdns, pcap, and pdns detections. In
this visualization, the traces are represented from left to right,
from TTLs 1-32. The solid blue squares represent responsive

hops. The solid green squares represent responsive hops
that were in the target destination ASN of the trace. The
small orange circles (rdns) indicate that a reverse lookup was
performed on the nonced address of the probe we sent with
that TTL. The bigger magenta circles (pdns) indicate that we
found the nonced address of the probe we sent having that
TTL subsequently present in DNSDB. Finally, the big red
circles (pcap) indicate that a packet was unexpectedly received
destined for the nonced address of the probe we sent having
that TTL. Note that if we detect a reaction to a nonce-laden
packet sent with TTL of 9, for example, it does not mean
that a monitor or surveillant was at exactly hop 9. It means
that monitoring ostensibly occurred within 9 hops along the
path to the target because hops 1-8 also had the opportunity
to observe the probe packet with a TTL of 9. The lower the
TTL value associated with detection, the lower the upper
limit on topological distance to the monitor and typically, the
more constrained the observer’s possible location.

In the top trace, we see that our probes might not have
reached the target’s origin ASN because it has only blue
responsive hops, not green. (It’s possible the probes were
responded to, and possibly filtered, by some network upstream
from the destination, one that is possibly affiliated with it.) In
the middle trace, we see monitoring detected by rdns and pcap
methods involving the nonced address for a probe sent with a
TTL of 2. In the bottom trace we see evidence of a monitor
based on rdns and pdns detection. Notice that these are probes
that reached the target’s origin ASN. (Section V-B has details
validating monitor detection for these particular traces.)

With this knowledge, we can move on to looking at our
similar, but bigger, visualization in Figure 4. This displays
trace data for nearly 250 of the approx. 25k traces where
monitoring was detected. Because we trace to the same targets
in each experiment, we line-up the traces having the same
target (horizontally), exposing how monitor behaviors change
either over time or due to differing probe types per experiment.
The traces are arranged on the vertical axis by destination ASN
and in order of target address within each ASN, and we display
divisions between targets’ origin ASNs on the rightmost label
of the vertical axis.

First, comparing experiments across Figure 4, note that
there are routers that respond to UDP probes to or from
port 443 that did not respond to our ICMPv6 ping probes,
and the same can be said of monitors or surveillants. The
differences between experiments UDP:443s and Ping are par-
ticularly interesting given that they were run back-to-back.
For example, the topmost ASN ignored our ICMPv6 probes
but was very responsive to, or arguably interested in, probes
having source port 443. This reveals that monitoring practices
and policies clearly differ by ASN. It also indicates that probe
protocols matter when designing systems to detect monitoring.
While space limitations preclude describing all the phenomena
evident in Figure 4, we claim it demonstrates NOISE’s
power to identify monitoring and active response practices and
associate them with specific networks’ address blocks, albeit
shown anonymously, here.

4

4

8

8

12

12

16

16

20

20

24

24

28

28

32

32

TTL

0

100

200

tra
ce

 n
um

be
r

UDP:443c

4

4

8

8

12

12

16

16

20

20

24

24

28

28

32

32

TTL

Ping

4

4

8

8

12

12

16

16

20

20

24

24

28

28

32

32

TTL

resp. hop

dstASN hop

rdns
pdns
pcap

UDP:443s

I II III

IV V

VI
VII
VIII

IX

A
SN

 (a
no

ny
m

iz
ed

)

Fig. 4. A visualization of nearly 250 traces (to unique targets) across each
of our three experiments, having evidence of monitoring in at least one
experiment.

B. Microscopic View & Validation

Given the myriad instances of monitoring we’ve detected
in the modest set of experiments presented, we next attempt
to validate or verify a subset of the results by gathering
ground-truth for instances of NOISE-detected monitoring:
curious DNS queries, sharing DNS data, and eavesdropping
or “monitoring in the middle.” Each of these anecdotes entails
monitoring by, or sharing resulting information with, third
parties who are neither the source nor target networks of
NOISE probes.

1) Curious Queries: Table IV shows an abbreviated time-
line of events for a trace in which NOISE received reverse
DNS (rdns) queries, indicating monitoring, i.e., a reverse
lookup was performed on the nonced source address of a probe
packet. The lines in bold represent evidence of monitoring
within 10 hops of the NOISE source host. At 9m 7s and sec-
onds thereafter, NOISE captures reverse DNS queries for the
nonced address sent with hop limit of 10. The source address
of these query packets belongs to the network containing the
trace’s target address.

This trace is also the top trace in Figure 3, where we
see the NOISE observations (orange circles) occur at hops

TABLE IV
EVENTS THAT OCCURRED DURING TRACE TO AN ASIAN NETWORK IN

EXPERIMENT UDP:443C

Delta time Event ProbeTTL
0s tr probe sent to target 26

0.24s tr hop response 26
8m 56s tr probe sent to target 10
9m 7s RDNS query on noncedAddr

by target’s network 10
9m 10s RDNS query on noncedAddr

by target’s network 10
3h 6m tr probe sent to target 14
3h 6m tr hop response 14

3h 38m tr probe sent to target 32
3h 38m tr hop response 32

...
...

...
1d 15h last tr probe sent to target 29
1d 15h tr hop response 29

9, 10, and 11, although we did not receive an ICMPv6 hop
limit exceeded error message from routers at these hops. Note
that no responsive hops are in a network associated with the
target (that is, only blue squares). Here a traditional traceroute,
without nonces, does not show whether or not probes reach
the destination network. However, NOISE’s rdns detection
provides evidence that trace probes’ nonces did reach the
destination network of the target because the recursive DNS
queries had source addresses within the target’s destination
network. This demonstrates how NOISE’s modified yarrp
sometimes improves reachability measurements over those
performed with either yarrp or other traceroute tools.

Furthermore (but not shown), using NOISE’s detailed packet
capture logs at its authoritative DNS service (NSD), we find
that this network’s DNS server(s) subsequently queried our
NOISE DNS server by the name we provided as an answer to
the PTR query, e.g., something.noise.example.com.
This exposes a network vulnerability that could be abused.
Once such behavior is known, an adversary could remotely
cause the institution to query an arbitrary domain name of
the adversary’s choosing merely by replying with that name
in response to a PTR query (that it can elicit using NOISE’s
nonced address probing technique). For example, this can be
abused for (a) misdirection (of network forensics investiga-
tion), (b) adversely affecting caching and performance of the
institution’s DNS service, and (c) the institution’s unwitting
participation in DNS amplification attacks.

2) Sharing Passive DNS Data: Table V shows an abbre-
viated timeline of events for a trace in which NOISE found
that queries involving its nonced addresses were somehow
conveyed to DNSDB. This trace, performed in April 2019,
was from the NOISE source host located within a commercial
datacenter in the U.S. to a target at a U.S. university. The two
lines in bold represent strong evidence of monitoring within
14 hops of the NOISE source host. At 1h 47s in the trace,
NOISE transmits a UDP probe having a nonced address and
port 443 as its source and a hop limit of 14. At 4h 44m, the
trace is complete. At 18d 5h—18 days later—NOISE captures
a reverse DNS query for the nonced address sent with hop limit
of 14. The source address of this query packet belongs to the

TABLE V
EVENTS THAT OCCURRED DURING AND AFTER TRACE TO A UNIVERSITY

IN EXPERIMENT UDP:443S

Delta time Event ProbeTTL
0s tr probe sent to target 15

2m 32s tr probe sent to target 17
16m 14s tr probe sent to target 7
16m 14s tr hop response 7

...
...

...
1h 47s tr probe sent to target 14

...
...

...
4h 44m last tr probe sent to target 4
4h 44m tr hop response 4
18d 5h RDNS query on noncedAddr

by university 14
18d 6h noncedAddr appears in

passive DNS database 14

university’s network containing the trace’s target address. At
18d 6h—an hour later—this nonced address appears in the
third-party passive DNS database.

A similar trace, performed in January 2019, destined for
a different U.S. university, is the bottom trace in Figure 3.
There you can see at hop 14 that NOISE has both rdns (reverse
DNS, orange circle) and pdns (passive DNS, magenta circle)
observations. Across all three experiments, we found that some
of our nonced addresses ultimately appeared in DNSDB when
the NOISE probe packets reached either of two unrelated
U.S. universities. That is, their PTR queries and responses
were captured in this database somehow by that third-party’s
network of monitored DNS servers. This means that NOISE
can identify some recursive nameservers that have a third
party’s monitor installed and are monitoring DNS queries and
answers and transmitting them to the company.

To get to the truth, we had personal conversations with
expert operations personnel at each of the two universities,
agreeing to maintain their anonymity. The first university,
associated with pdns detections on traces in January 2019,
reported that network operations collected data from border
routers via flow export [26] to support network troubleshooting
and forensics. This data was then post-processed using custom
scripts that sometimes perform DNS reverse lookups [27]. Fur-
thermore, they reported that the university had been running
passive DNS query monitoring software in the university’s
primary DNS server infrastructure in January 2019 and years
prior. A security officer also reported that their operations
systems rely on this DNS infrastructure for recursive queries,
and thus, DNS queries in incident handling may very well be
subject to passive DNS monitoring [28]. Coincidentally, they
also reported that university technical personnel decided not
to reinstall this passive DNS software when the DNS server
infrastructure was upgraded prior to April 2019. Our results
coincide with this: NOISE no longer had pdns detections
associated with this university as of April 2019.

Similarly, regarding the second university, we validated
our results by personal, anonymous interview. For traces like
the one in Table V, we learned that this university’s network
team records all traffic meta-data via flow export, not just

unsolicited traffic such as our probes [28]. Furthermore,
the reported purpose of the data collection was to support
incident handling and network troubleshooting [29]. With
respect to the 18 days passing between the time the NOISE
probe was received and the time the reverse DNS lookup
was performed, they hypothesized that the subsequent lookup
was due to an actual incident investigation, likely attended to
by an analyst, i.e., some manual effort. Their hypothesis is
that the probe matched an automatic detection rule targeting
threats which would cause it to garner additional attention.
They did not share their log retention policy, but it is clear
from our results that logs were retained for at least 18 days
at the time. They also reported that the university indeed
operates passive DNS monitoring as is a prescribed best
practice amongst some higher-education institutions [4].

Figure 4 includes both these universities pdns observations
in context (magenta circles). These two universities’ ASNs are
arranged above and below the tick mark IX, topmost in the
vertical axis labels on the right. First, considering the traces
above that tick mark (trace numbers 187-250), we see that in
the first column (UDP:443c, January 2019) of traces destined
for UDP port 443, there are many rdns detections (orange
circles) but no pdns detections (magenta circles). In the second
column (UDP:443s, April 2019) of traces, however, from UDP
port 443 and destined for pseudorandom ports, there are many
pdns observations (magenta circles). Lastly for this ASN, in
the third column (Ping, April 2019) of traces, ICMPv6 echo
requests show no detections. The Ping experiment’s traffic is
treated differently, either in monitoring or in reactions, e.g.,
automated or manual analysis. In Figure 4, consider the traces
in the other university’s ASN, below tick mark IX, above tick
mark VIII (trace numbers 106-186). Here we see occasional
pdns detections in the first column (UDP:443c, January 2019),
evidencing that institution’s participating in passive DNS mon-
itoring at the time of that survey experiment. However, these
observations do not appear in the latter columns (UDP:443s
and Ping, April 2019), coinciding with the university personnel
reporting they were no longer performing the passive DNS
monitoring.

Overall, this remote detection of passive DNS could be
used and abused in some ways. Because the NOISE technique
can remotely detect data collection and monitors, potential
adversaries could use NOISE to classify institutions’ networks
and attack surfaces. For instance, one might attack collection
infrastructure by employing the NOISE technique to cause cer-
tain institutions to perform many queries. This can pollute the
passive DNS database with either misleading or superfluous
information, causing confusion or operational problems that
could be detrimental to security investigations. The ability to
remotely cause a network to perform DNS lookups and cause
the resulting names and addresses to be stored, indefinitely,
in passive DNS databases also presents subsequent security
or privacy issues, e.g., as addresses or names in those long-
lived records become encumbered by reputation or become
targets [16], [30] as they pass from one third party to the next.

TABLE VI
EVENTS THAT OCCURRED DURING TRACE DETECTING EAVESDROPPING IN

EXPERIMENT UDP:443C

Delta time Event ProbeTTL
0s tr probe sent to target 2

0.0005s tr hop response 2
9m 58s TCP SYN :20 → noncedAddr:80

by cloud Provider 2
10m 25s TCP SYN :20 → noncedAddr:443

by cloud Provider 2
10m 43s RDNS query on noncedAddr

by cloud DNS Provider 2
22m 26s tr probe sent to target 24

...
...

...
11h 51m last tr probe sent to target 15

3) Eavesdropping: Table VI shows an abbreviated timeline
of events for a trace in which NOISE detected monitoring amid
the trace path from source to destination ASN, i.e., a monitor
in the middle. This trace is the middle trace in Figure 3, where
we see the NOISE detections (circles) occur at hop 2 (a blue
square), well before the trace reaches the destination ASN by
hop 12 (green squares). This trace, performed in January 2019,
was from the NOISE source host, located within a commercial
datacenter in the U.S., to a U.S. target thousands of miles
away. The three lines in bold represent strong evidence of
eavesdropping within two hops of the NOISE source host.
First, to start the trace, NOISE transmits a UDP probe having
a nonced address as its source and a hop limit of 2, destined
for port 443 of the target. At 9m 58s, NOISE unexpectedly
captures a TCP SYN packet destined for port 80 and the
nonced address used as source of the hop-limit=2 probe. At
10m 25s, NOISE captures a similar TCP SYN packet destined
for port 443 and this same nonced address. Both these TCP
SYN packets have an unfamiliar source address belonging to
a popular cloud host provider, different than the datacenter. At
10m 43s, NOISE captures a reverse DNS query for this same
nonced address. The source address of this query belongs to
a public recursive DNS provider’s network.

Notice that the second line of Table VI, at 0.0005s, shows
that NOISE captured a router hop response for hop limit 2
after only a fraction of a millisecond, i.e., an ICMPv6 hop
limit exceeded error message was received, destined for the
nonced source address. This means that the nonce was first
propagated by a router before the eavesdropping detection
events (bold lines), and thus, it is possible that an eavesdropper
gleaned the nonced address from the ICMPv6 error message
packet rather than from the NOISE probe packet. However,
we further find that that ICMP error message packet itself had
a hop limit of 31 when it arrived at the NOISE source host.
This suggests its initial hop limit was 32 because common host
implementations are known to use 32, 64, or 255. If so, the
ICMPv6 error response traversed just one router, suggesting
it originated at a router at hop 2 and that its return path has a
maximum length of two hops. Given (a) a rule-of-thumb that
1ms round-trip-time (RTT) represents a maximum distance of
approx. 100km and (b) the RTT for a router at hop 2 is only
0.5 milliseconds, we can reasonably assume that this router

is within 50km of the NOISE source host. Consequently, hop
2 is definitely “in the middle” given that the trace target is
thousands of miles away, bolstering a conclusion that this
evidences eavesdropping.

With the help of the host network’s architect, we have
eliminated the possibility that the eavesdropping is being
performed in the NOISE host network itself, i.e., within the
first hop [27]. All indications are that the eavesdropping is
on a link between the host’s gateway router (belonging to the
host network) and the next-hop router, operated by an ISP with
which the host network peers.

Using NOISE’s detailed logs, we further find that a little
more than 10 minutes passed between dissemination of the
nonce in the probe packet (and presumed eavesdropping)
and propagation of that nonce back to our authoritative name
server by third-party reverse query. Thus, NOISE can detect
some monitoring (e.g., packet or flow capture or logging), can
then isolate its candidate location in the router-level Internet
topology (path), and can ultimately show that information
about traffic is being shared with third parties. Across all
three experiments, we find a total of 459 traces having one
of these suspicious TCP SYN connection attempts from the
given cloud host provider’s ASN to 459 distinct NOISE
nonced addresses. The distribution of hop limits associated
with those nonced source addresses (not shown) suggests
uniform packet sampling, irrespective of hop limit.

Once NOISE identified the cloud host provider’s source IP
address used in these curious TCP SYN connection attempts,
we searched for independent records of this suspicious be-
havior in the security community. This search yielded two
pieces of evidence involving the source address’s /64 prefix.
First, a large Content Delivery Network’s transaction logs were
searched for the /64 prefix in question as a WWW client.
We find that it is regularly the source of myriad successful
connections to WWW infrastructure [31]. Second, we find
an independent report online (late 2018, not included here to
maintain privacy) that it has been the source of connection
attempts to IPv6 temporary privacy addresses in another
country, consistent with the monitor’s being in a privileged
location, such as an Internet exchange.

CONCLUSION

Motivated by concerns of our own and of the community
about pervasive, systematic surveillance of Internet traffic, we
develop NOISE: an inverse surveillance method and system.
We’ve evaluated and reported its effectiveness, but this is
only a start. In general, the method is not limited to only
nonce-laden (IPv6) transport identifiers, nor limited to traf-
fic synthesized for active measurements. We envision broad
application in concert with, and literally within, everyday
Internet traffic and applications. With NOISE implemented
pervasively, e.g., in the WWW, monitors would have no choice
but to observe nonce-laden traffic, improving detection of
surveillants whenever they act on their observations.

ACKNOWLEDGMENTS

We appreciate the significant help on this work from these
colleagues and coworkers: Niels Bakker, Arthur Berger, Robert
Beverly, Aaron Block, David Choffnes, David Duff, Jared
Mauch, Suzanne Pan, Philipp Richter, Kyle Rose, Steven
Schecter, Chris Schill, Jon Thompson, and Rick Weber. This
work utilizes tshark, GNU parallel, and Neo4j. [32]–[34]

REFERENCES

[1] S. Farrell, “Pervasive Monitoring Is an Attack,” RFC 7258,
Internet Engineering Task Force, May 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7258

[2] C. C. Demchak and Y. Shavitt, “China’s Maxim–Leave No Access Point
Unexploited: The Hidden Story of China Telecom’s BGP Hijacking,”
Military Cyber Affairs, vol. 3, no. 1, p. 7, 2018.

[3] Farsight Security, “Passive DNS project,” 2018, https:
//www.farsightsecurity.com/technical/passive-dns/.

[4] REN-ISAC, “PASSIVE DNS,” 2019, https://www.ren-isac.net/
member-resources/pDNS.html.

[5] S. Mann, J. Nolan, and B. Wellman, “Sousveillance: Inventing and
Using Wearable Computing Devices for Data Collection in Surveillance
Environments,” Surveillance & society, vol. 1, no. 3, pp. 331–355, 2003.

[6] S. Mann, “Sousveillance: Inverse Surveillance in Multimedia Imaging,”
in Proceedings of the 12th annual ACM international conference on
Multimedia. ACM, 2004, pp. 620–627.

[7] C. Stoll and J. Connolly, “The Cuckoo’s Egg: Tracking a Spy Through
the Maze of Computer Espionage,” Physics Today, vol. 43, p. 75, 1990.

[8] T. Aura, “Cryptographically Generated Addresses (CGA),” IETF RFC
3972, March 2005.

[9] B. Cox, “The ISPs sharing your DNS query data,” June 2018, https:
//blog.benjojo.co.uk/post/ISPs-sharing-DNS-query-data.

[10] C. M. McRae and R. B. Vaughn, “Phighting the Phisher: Using Web
Bugs and Honeytokens to Investigate the Source of Phishing Attacks,”
2007 40th Annual Hawaii International Conference on System Sciences
(HICSS’07), pp. 270c–270c, 2007.

[11] “Honeytoken,” 2018, https://en.wikipedia.org/wiki/Honeytoken.
[12] Finjan Team, “How Honeytokens Are Used To

Track Cybercriminals,” 2018, https://blog.finjan.com/
honeytokens-used-to-track-cybercriminals/.

[13] B. VanderSloot, A. McDonald, W. Scott, J. A. Halderman, and R. Ensafi,
“Quack: Scalable Remote Measurement of Application-Layer Censor-
ship,” in 27th {USENIX} Security Symposium ({USENIX} Security 18),
2018, pp. 187–202.

[14] A. McDonald, M. Bernhard, L. Valenta, B. VanderSloot, W. Scott,
N. Sullivan, J. A. Halderman, and R. Ensafi, “403 Forbidden: A Global
View of CDN Geoblocking,” in Proceedings of the Internet Measurement
Conference 2018. ACM, 2018, pp. 218–230.

[15] R. Beverly, “Yarrp’ing the Internet: Randomized High-Speed Active
Topology Discovery,” in Proceedings of the ACM Internet Measurement
Conference (IMC), Nov. 2016.

[16] R. Beverly, R. Durairajan, D. Plonka, and J. P. Rohrer, “In the IP
of the Beholder: Strategies for Active IPv6 Topology Discovery,” in
Proceedings of the Internet Measurement Conference 2018, ser. IMC
’18. New York, NY, USA: ACM, 2018, pp. 308–321. [Online].
Available: http://doi.acm.org/10.1145/3278532.3278559

[17] R. Sherwood and N. Spring, “Touring the Internet in a TCP Sidecar,”
in Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement. ACM, 2006, pp. 339–344.

[18] K. Bu, Y. Yang, A. Laird, J. Luo, Y. Li, and K. Ren, “What’s (not)
validating network paths: A survey,” arXiv preprint arXiv:1804.03385,
2018.

[19] E. L. Wong, P. Balasubramanian, L. Alvisi, M. G. Gouda, and
V. Shmatikov, “Truth in advertising: Lightweight verification of route
integrity,” in Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing. ACM, 2007, pp. 147–156.

[20] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai, C. Lumezanu, N. Spring,
and B. Bhattacharjee, “Alibi routing,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 611–624.

[21] “EdgeScape,” 2019, https://developer.akamai.com/edgescape.

[22] M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Savage, “Oppor-
tunistic measurement: Extracting insight from spurious traffic,” in Proc.
4th ACM Workshop on Hot Topics in Networks (Hotnets-IV), 2005.

[23] D. J. Bernstein, “ChaCha, a variant of Salsa20,” 2008.
[24] V. Yegneswaran, P. Barford, and D. Plonka, “On the Design and use

of Internet Sinks for Network Abuse Monitoring,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2004,
pp. 146–165.

[25] K. Fukuda and J. Heidemann, “Who Knocks at the IPv6 Door? Detecting
IPv6 Scanning,” in Proceedings of the Internet Measurement Conference
2018, 2018, pp. 231–237.

[26] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to Data
Analysis with Netflow and IPFIX,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[27] “Personal conversation with senior network architect,” 2019.
[28] “Personal conversation with information security officer,” 2019.
[29] “Personal conversation with director,” 2019.
[30] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D.

Strowes, L. Hendriks, and G. Carle, “Clusters in the Expanse: Under-
standing and Unbiasing IPv6 Hitlists,” in Proceedings of the Internet
Measurement Conference 2018. ACM, 2018, pp. 364–378.

[31] “Personal conversation with senior architect,” 2019.
[32] G. Combs, “TShark - the Wireshark Network Analyser.”
[33] O. Tange et al., “GNU parallel - the Command-line Power Tool,” The

USENIX Magazine, vol. 36, no. 1, pp. 42–47, 2011.
[34] “The Neo4j Native Graph Database,” 2019, https://neo4j.com/product/.

