
Virtualized Games for Teaching About Distributed Systems∗

Joel Wein
Polytechnic Institute of NYU

Brooklyn, NY
wein@poly.edu

Kirill Kourtchikov
Polytechnic Institute of NYU

Brooklyn, NY

Yan Cheng
Polytechnic Institute of NYU

Brooklyn, NY

Ron Gutierez
Polytechnic Institute of NYU

Brooklyn, NY

Roman Khmelichek
Polytechnic Institute of NYU

Brooklyn, NY

Matthew Topol
Polyetchnic Institute of NYU

Brooklyn, NY

ABSTRACT
Complex distributed systems are increasingly important in
modern computer science, yet many undergraduate curric-
ula do not give students the opportunity to develop the skill
sets necessary to grapple with the complexity of such sys-
tems. We have developed and integrated into an undergrad-
uate elective course on parallel and distributed computing
a teaching tool that may help students develop these skill
sets. The tool uses virtualization to ease the burden of re-
sourcing and configuring complex systems for student study,
and creates varied “firefighting” gaming scenarios in which
students compete to keep the system up and running in the
presence of multiple issues. Preliminary experience indicates
that (1) students find the tool engaging and (2) it is a man-
ageable way in which to give students a novel perspective
on interaction with complex distributed systems.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Curriculum

General Terms
Management

Keywords
Distributed Systems, Gaming, Curricula

1. INTRODUCTION
Given the importance of distributed systems for the next

decade of computing and beyond, it is critical that com-
puter science educators train students who can understand
such systems and contribute to their evolution. In fact, the
Joint Task Force on Computing Curricula of the IEEE Com-
puter Society and the ACM, in its 2001 report on curricu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee,USA
Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00.

lum guidelines for undergraduate degree programs in com-
puter science, [1] identified the increasing importance of the
world-wide web and networking technology as one of the key
drivers for the need for revisiting computing curricula. Un-
fortunately, it is perceived that the rate of development of
curricula in distributed systems has lagged behind the (very
rapid) rate of deployment of these technologies in practice.
For example, IBM and Google recently lamented this situa-
tion and launched a significant initiative to help universities
develop advanced curricula for large scale distributed com-
puting, in order to“prepare students to harness the potential
of modern computing systems.” They have made a multi-
year commitment to providing universities with hardware,
software, and services to advance training in large-scale dis-
tributed computing [7].

We believe that there is much interesting work to be done
by computer science educators in developing curricula that
more fully introduce students to distributed systems at the
undergraduate level. One important direction in this vein
is developing techniques to give students the opportunity to
experiment with, appreciate, and even enjoy the complexity
and power of large and complex distributed systems. In
practice, such systems, such as a supply-chain application,
span multiple languages and platforms at multiple sites and
interact via one or more sorts of middleware. Producing
students who can work at higher levels of such large systems
is a substantial challenge. In this paper we describe one
approach to improving the distributed systems curricular
experience in support of this larger goal.

While many institutions teach undergraduates about dis-
tributed systems, to date many or most projects in these
courses are of a very limited scope. This is primarily for
two reasons. First, it is a major effort to get a nontrivial
distributed system up and running correctly; it requires sig-
nificant attention to configuration issues, support staff that
is knowledgeable about the middleware and participating
systems, and substantial dedicated hardware. Second, as-
suming such an environment is available, it is difficult for
students to manage the development, deployment and test-
ing of code on anything but a small number of nodes.

Distributed projects of a limited scope are sufficient for
teaching students certain concepts in distributed systems.
If one wants to teach students how to get two nodes to
communicate over a socket or a remote procedure call, ex-
periment with simple concurrency, or experience a three-
machine deadlock, a simple application on 2-3 machines
is more than sufficient. Our hypothesis is, however, that

many concepts – such as scalability, heterogeneity, robust-
ness, fault-tolerance, and the ability to think about compos-
ing a distributed systems out of a number of smaller pieces
– can be taught much more effectively through interaction
with larger and more complex systems. In addition, we hy-
pothesize that students need a different set of skills to work
with such systems, which includes the ability to think about
the system at multiple levels of detail, from the broad system
architecture to the details of individual components, and to
learn how to navigate between these levels and chose the
appropriate one at the appropriate time.

In this paper we present the rationale behind, design of
and preliminary experience with a teaching tool that po-
tentially can help students develop the necessary skill sets.
This tool draws upon two important elements. First, it uses
a virtualization layer to overcome many of the obstacles in
resourcing, setup and configuration that make it difficult
for instructors to work with substantial distributed system
projects. Second, on top of this virtualization layer we build
a novel gaming environment in which students work in teams
to understand and keep running smoothly a nontrivial dis-
tributed system.

The basis of our game is a barebones but fully functional
integrated website that combines features of social network-
ing and video sharing. The site displays (mock) advertise-
ments when different pages are viewed. The game generates
artificial traffic against the site, and the overall system met-
ric of health is the number of advertisements served and
resulting “revenue.” The game – a sort of firefighting ex-
ercise – begins when the game administrator “breaks” part
of the system in some way. Students notice that the sys-
tem’s performance has degraded because ads and revenue
have dropped off. They then work, typically in teams, to
figure out what is wrong with the system and fix it.

We believe that this approach has several possible ad-
vantages, both in terms of engaging students and enabling
them to learn about distributed systems in different ways.
It should enable them to understand scalability issues when
they see how a complex system scales and does not scale, un-
derstand by experience both the diversity of failure modes in
a distributed system, and the important subtleties in design-
ing distributed algorithms that can handle those failures. It
should also help them gain skills in plunging into and un-
derstanding a complex system. This is an important point
– most students who work with distributed systems will not
start programming from scratch but rather need to under-
stand and contribute to a pre-existing system. Our game can
introduce them to this (sometimes daunting) undertaking in
an engaging way.

We note that this paper is not a full-fledged research study
as we are not yet at the point of conducting a rigorous eval-
uation of the game’s educational impact. Rather, this paper
should be viewed as a cross between an experience report, in
which we share our experience in designing the game and de-
ploying it in a limited way, and a philosophical paper which
argues that more creative work is required to teach students
about the reality of distributed systems, and that virtualiza-
tion and gaming provide one interesting direction to pursue.

2. BACKGROUND

2.1 Why Virtualization?
Virtualization can be conceived of as an abstraction layer

that separates the physical hardware from the operating
system. In this model one physical machine can support
multiple virtual machines, potentially each running differ-
ent operating systems. Virtualization technology is having
an enormous impact in the corporate environment because
it enables organizations to simplify their infrastructure on
fewer physical processors at substantial cost savings. As
profound as its impact in the corporate environment, virtu-
alization has potential for similar impact on the educational
landscape. Virtualization technology enables us to create
much richer and realistic networks for educational experi-
ences, and support far greater numbers of nodes for the
purposes of experimenting with distributed systems. For
example, in one configuration of our gaming environment,
a server purchased for less than $3000 easily supported 3
teams each with 6 servers, for a total of 18 virtual machines,
by using VMWare virtualization software [17].

2.2 Why Gaming?
There is a growing body of literature on the potential of

digital games to be an important teaching tool in a wide
variety of disciplines. One example is a recent report by
the American Federation of Scientists [13] in which they ar-
gued that the United States should prioritize the study of
digital games for learning, because “(1) Many videogames
require players to master skills in demand by today’s em-
ployers, such as strategic and analytical thinking, problem
solving, planning and execution, decision-making, and adap-
tation to rapid change. (2) They can be used to practice
practical skills and important skills that are rarely used, to
train for high-performance situations in a low-consequence-
for-failure environment, and for team building. (3) Games
offer attributes important for learning: clear goals, lessons
that can be practiced repeatedly until mastered, monitoring
learner progress and adjusting instruction to learner level
of mastery, closing the gap between what is learned and its
use, motivation that encourages time on task, personaliza-
tion of learning, and infinite patience. (4) Today’s students,
the so-called digital natives, are poised to take advantage
of educational games.” Finally, stating the obvious, we be-
lieve that it is possible to develop games that will be fun
and engaging; anything that is fun and engaging for the
students has substantial educational potential.

2.3 Related Work
There has been a great deal of work on using game devel-

opment in computer science curricula as a way to increase
student engagement and retention, e.g. [8, 15]. There has
been relatively less work, however, on developing gaming en-
vironments within which computer science concepts can be
taught. Educators in the field of information security ed-
ucation have developed a number of capture-the-flag style
games, many of which use virtualization to create the indi-
vidual nodes e.g. [18]. The SimSE project [11] designed
a simulation game for teaching about the software engi-
neering process in a more realistic way. Game2Learn is a
project that teaches introductory programming by using a
multiplayer online role-playing game in which players need
to carry out elementary programming activities to advance
through the game[2]. Virtualization is also increasingly en-
abling innovation in CS curricula [5].

Until recently there has been relatively little work on in-
novative methodologies to teach distributed systems when

compared to other areas of computer science – overall there
are 10-15 papers out of 1000+ published in the 2000-2008
SIGCSE and ITiCSE conferences. These include several pa-
pers on innovative ways to conceptualize distributed algo-
rithms, [14, 16, 12], or on ways to teach specific distributed
technology such as grid computing methodology [6]. There
are several attempts at environments for building small-scale
distributed projects such as DPLab[3], or for visualizing
communication patterns in student programs [4]. None of
these attempt to give students the opportunity to work with
a large-scale integrated project of any sort.

As noted in the introduction, recently Google and IBM
announced an initiative to help train the next generation of
students to be equipped to build internet-scale distributed
systems [7]. This effort has led to the devlopment of cur-
ricula focused on large-scale data processing using Hadoop,
a powerful high-level tool for parallelizing large-scale com-
putations over large collections of servers, e.g. [9]. The
Hadoop/MapReduce model provides a very clean and highly
abstract way to think about parallelizing large data-intensive
applications. Infrastructure issues of fault tolerance, pro-
cessor allocation, etc. are entirely hidden from the applica-
tion programmer. In contrast, we are interested in training
students who can think about that infrastructure layer and
build the software necessary to support such high-level ab-
stractions.

An assumption that underlies our work is that most in-
stitutions that offer degree programs in computer science
give students at best experience with distributed systems
of relatively limited scope. We attempted to validate this
assumption by carrying out a limited survey of computing
curricula in the 52 private campuses in New York Stat that
offered bachelors degrees in computer science. Based on the
websites of the institutions, we determined that 18 had ded-
icated elective courses in distributed systems and that only
7 of those 19 had significant projects. While our survey
methodology is quite rough, we view it as some validation
for our assumption.

3. GAME DESCRIPTION

3.1 The Distributed System
Our development goal was to build a distributed system

of nontrivial complexity and then build a gaming environ-
ment that would present students with various failure modes
that they would have to hunt down. The educational goals of
this effort were several. First, to give students experience in-
vestigating and understanding complex distributed systems
systems with which they are not intimately familiar, and
provide experience in evaluating a large number of possible
causes in order to find root cause and fix it; we believe this is
a necessary skill set when dealing with real-world distributed
systems. Second, to drive home in a concrete way the no-
tion that in realistic distributed systems anything that can
go wrong will go wrong (see [10] for a case study), and thus
to teach in concrete ways different approaches to insure re-
liability. Third, to make concrete the notions of scalability
by providing scenarios in which systems are pushed to the
limits of their ability to scale. Fourth, and importantly, to
create an engaging and fun experience to facilitate learning.

We thus needed to build a distributed system that was
complex enough to be of interest, but at the same time
was understandable by our students. At our institution

we teach an elective undergraduate course in parallel and
distributed systems that combines experience with the ba-
sic programming tools necessary to build simple distributed
systems (threads, sockets, webservices), case studies of im-
portant real-world systems (e.g. distributed file systems) ,
and core algorithmic issues (e.g. time, fault tolerance, and
replication). Each year the course has a different imple-
mentation project, which typically involves three major el-
ements. First, a web site developed in PERL or PHP that
interfaces to a backend database; second, a multithreaded
server that communicates over sockets in order to accom-
plish various tasks necessary to the application, often stor-
ing results directly in the database; and third some sort
of fault-tolerance achieved by implementation of variants of
traditional distributed algorithms such as leader election,
two-phase commit or replication protocols. The underly-
ing application changes each year and has included a stock-
trading application and a supply-chain management appli-
cation.

In 2007 and 2008 the applications were mock social net-
working and video sharing applications. To develop our dis-
tributed system we chose to utilize these two applications,
basing our codebase on some of the better assignments stu-
dents turned in during the semester. As a result, we had
confidence that the students had familiarity with appropri-
ate concepts to understand the codebase of the project; on
the other hand, our lab sessions were structured so that the
students playing the game based on a certain application
were not students who had participated in that development
project.

The combined system currently consists of a number of
virtual machines: one DNS server, one MySQL Server, and
multiple machines each of which hosts an Apache web server,
as well as separate processes to handle a chat application, a
video upload application, and a replication server that han-
dles the “distributed systems logic” for fault tolerance and
replication amongst the multiple servers. Each of these lat-
ter processes are coded in C++ based on the afore-mentioned
student projects, and all utilize multiple threads and com-
municate over sockets. An end user who would interact with
the system is directed by DNS to one of the web servers, and
views content, uploads content and chats with other users.
The Apache front end redirects the end users to the upload
and chat servers, which invoke the replication servers to in-
sure that they stay consistent in the presence of any faults
and outages. Each time a web page is displayed (mock)
advertisements are embedded in the page. These advertise-
ments are critical to the game, because advertisements dis-
played and clicked on have revenue values associated with
them; and revenue earned is the metric for game success.

3.2 Gameplay
We now explain how a student playing with the game in-

teracts with it. A player is cast in the role of the systems
administrator/engineer responsible for maintaining the dis-
tributed system. Players sit in teams of 2-3 in front of the
web-based game console, which we call PDConsole. Cur-
rently the game flow is not automated but is managed by
a game administrator who begins the game by generating
artificial web traffic to the social networking sites and appli-
cations. This traffic generator causes web pages and their
embedded advertisements to be transmitted and then fol-
lows embedded links and advertisements as well to generate

Figure 1: Sample System Diagram

additional traffic and revenue.
The metric for the game is revenue from advertisements

served. The PDConsole displays near-realtime graphs of rev-
enue earned and advertisement traffic. It also provides sta-
tus information on each of the constituent virtual machines
and the applications running on it, including application
state, application logs, and virtual machine statistics such
as memory, CPU and disk usage. These real-time indicators
are complemented by links to system documentation, win-
dows to communicate with the game administrator and gain
ssh access to the underlying virtual machines, and options
to spend some revenue to upgrade the system by buying ad-
ditional virtual machines or upgrading CPU/memory of the
current virtual machines.

Once the system is in a steady state the game adminis-
trator modifies something in the system which will decrease
revenue – we refer to these modifications as “System Issues.”
The players will likely first become aware of an issue when
the revenue graph starts to drop off, and may start flashing
yellow or red with captions indicating Caution or Danger.
The players must then try to discover and fix the problem
in order to return revenue to a healthy state. The speed
with which they do this determines how quickly revenue is
restored and how much revenue they gain over the course of
the game.

Figure 2 illustrates the player console during a system
issue. View and revenue graphs have dramatically fallen off,
and the graphs are flashing Danger warnings. The player
has opened up one view of various system statistics to try
to troubleshoot the problem.

3.3 System Issues
We have implemented a number of system issues scenar-

ios, classified by the categories of concepts we wish students
to experience. We enumerate them here, noting that each
system issue may touch on several categories.

We call the first category “Exploring a large and unfamil-
iar system – anything that might break in a large distributed
system can and will.” The issues in this category require the
students to dig around the system to find relatively simple
problems – a process is down, a rogue process is running and
chewing up CPU, or a disk partition has filled up. Issues in
these categories would as well serve as good warmups for
students to develop familiarity with the overall system.

The second category has to do with scalability and covers

two sorts of issues: what happens when the traffic levels rise
to levels that overwhelm some aspect of the system, and how
to make sure that the underlying system works well as addi-
tional elements are added to it. If, for example, we raise the
artificial traffic levels to a point beyond what the system can
handle, the student may chose to expend revenue to upgrade
the current machines or buy additional ones and add them
to the pool of webservers serving traffic, or alternatively re-
configure Apache to limit the number of connections it can
handle. If the students chose to grow the system by adding
additional servers, the system must be architected to work
well with more servers, and so potentially we will introduce
other issues that only arise at higher numbers of servers.

The third category deals with distributed algorithms. Even
simple distributed algorithms, because they need to respond
gracefully to a multitude of failure scenarios, can be a bit
subtle in how they are stated, and students often may not
appreciate the subtleties of how the failure modes are han-
dled. We therefore implement variants of the distributed
algorithms with which the students are familiar that do not
handle a failure case appropriately. For example, if we are
using two-phase commit to insure that uploads of videos are
appropriately replicated, we may induce some communica-
tions failure that is not handled well by the algorithm and
that brings the video upload system to a grinding halt. In
these cases the students need to look through the source
code of the underlying distributed algorithm to figure out
what is wrong.

Other categories include Communications Failures, which
includes trying to fix situations in which two virtual nodes
can not communicate and making sure that the system be-
haves appropriately in the presence of such situations, Sock-
ets and Threads in which we introduce code that does not
handle some aspect of sockets and threads correctly, and
Systems Administration, in which students encounter prob-
lems that ultimately can be traced to configuration issues
in Apache and MySQL for which the students need to dig
through the online documentation of these third party pack-
ages to solve configuration problems.

4. EXPERIENCE AND FUTURE WORK
All development on this project has been carried out by

undergraduates who are alumni of our elective course on
parallel and distributed systems. Development started in
the Fall of 2007, and an initial implementation was used in
the Spring 2008 version of the course taking the place of
one of the regularly scheduled laboratories for a subset of
the students in the class. A small number of additional
play/evaluation sessions were carried out in the Summer
of 2008 with additional students who were alumni of the
course. Overall, approximately 15 students participated, in
teams of 2 or 3 individuals at a time. As a result, our expe-
rience with student interaction with the game is extremely
preliminary at this point, and conclusions are at best anec-
dotal. Nonetheless, the sessions were valuable in developing
some preliminary impressions (based on observations and
subsequent discussions) and suggesting additional necessary
work.

First, we observed that students responded well to the
game, finding it fun and engaging. The energy level in
the room was very high as students worked together to
solve problems. Second, overall the students were capable
of learning how to find their way around the system quickly

Figure 2: PDConsole during a System Issue

enough so that they could work through an introduction and
approximately 3 system issues in a 2 hour session. Third, as
the two hour sessions progressed, the students developed en-
hanced awareness of the wide variety of the sorts of problems
they needed to consider.

Virtualization proved to be an extremely valuable tool in
designing the gaming environment. In addition to the simple
advantage of supporting large numbers of virtual servers on
one physical server, it enabled us to copy machines in order
to provide uniform environments for different machines, and
allowed us to let students modify their environment on the
fly by upgrading machines or purchasing new ones.

Our most immediate future goal is to take this implemen-
tation and preliminary experiences and design experiments
to make the effort a real contribution to the science of learn-
ing through games. In order to do this we need to define
more precisely the skill sets that we hope students will de-
velop through interaction with the game, and design pre and
post evaluations to measure the impact of the game. Simul-
taneously, and guided by our experimental design, we need
to refine our collection of system issues to precisely target
the types of learning we hope to encourage. We also need to
do additional development to support more varied types of
game play flow. Certain types of problems lend themselves
to solution in a high-energy group competition setting, but
other issues will require deeper thought spaced out over a
period of time. To facilitate this the game needs to support
more automation, including pause and snapshot functional-
ity so students can play at their pace.

5. ACKNOWLEDGMENTS
We gratefully acknowledge the input and encouragement

of Julia Austin and Carl Skelton. Partially supported by
NSF CPATH Grant 0722279, VMWare through the VMWare
Academic Program, the Othmer Institute of the Polytech-
nic Institute of NYU, and the Polytechnic Institute of NYU’s
Summer Undergraduate Research Program.

6. ADDITIONAL AUTHORS
Additional authors: Chris Sherman (Polytechnic Institute

of NYU).

7. REFERENCES
[1] ACM/IEEE. Computing curricula: Computer science.

http://www.acm.org.

[2] T. Barnes, H. Richter, A. Chaffin, A. Godwin,
E. Powell, T. Ralph, P. Matthews, and H. Jordan.
Game2learn: A study of games as tools for learning
introductory programming concepts. In Proceedings of
the ACM SIGCSE ’07 Conference, 2007.

[3] M. Ben-Ari and S. Silverman. Dplab: an environment
for distributed programming. In Proceedings of the
ACM ITiCSE conference, 1999.

[4] C. Brown and C. McDonald. Visualizing berkely
socket calls in students’ programs. In Proceedings of
ITiCSE 2007, pages 101–105, 2007.

[5] W. I. Bullers, S. Burd, and A. F. Seazzu. Virtual
machines - an idea whose time has returned:
application to network, security and database courses.
In Proceedings of SIGCSE 2007, pages 102–206, 2007.

[6] M. Holliday, B. Wilkinson, J. House, S. Daoud, and
C. Ferner. A geographically-distributed,
assignment-structured undergraduate grid computing
course. In SIGSCE 2005, 2005.

[7] IBM. Google and ibm look to next generation of
programmers.
http://www.ibm.com/ibm/ideasfromibm/us/google/index.shtml.

[8] R. Jones. Design and implementation of computer
games: A capstone course for undergraduate computer
science education. In Proceedings of the ACM SIGCSE
200 Conference, pages 260–264, 2000.

[9] A. Kimball, S. Michels-Slettvet, and C. Bisciglia.
Cluster computing for web-scale data processing. In
Proceedings of SIGCSE 2008, 2008.

[10] S. Muir. The seven deadly sins of distributed systems.
In Proceedings of USENIX 1st Workshop on Real
Large Distributed Systems, 2004.

[11] E. O. Navarro and A. van der Hoek. Simse: an
educational simulation game for teaching the software
engineering process. StIGCSE Bulletin, 36(3), 2004.

[12] R. Oechsle and T. Gottwald. Disaster(distributed
algorithms simulation terrain): A platform for the
implementation of distributed algorithms. In
Proceedings of ITiCSE 2005, pages 44–48, 2005.

[13] F. of American Scientists. Harnessing the power of
video games for learning.
http://fas.org/gamesummit/Resources/.

[14] W. Schreiner. A java toolkit for teaching distributed
algorithms. In Proceedings of ITiCSE 2002, 2002.

[15] E. Sweedyk, M. de Laet, M. Slattery, and J. Kuffner.
Computer games and cs education: why and how. In
Proceedings of SIGCSE 2005, pages 256–257, 2005.

[16] A. Tikvati, M. Ben-Ari, and Y. B.-D. Kolikant.
Virtual trees for the byzantine generals algorithm. In
SIGCSE 2004, pages 392–396, 2004.

[17] VMWare. http://www.vmware.com.

[18] J. Walden. A real-time information warfare exercise on
a virtual network. In SIGCSE 2005, pages 86–91, 2005.

name of the Bibliography in this case

