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Abstract— Incorporating pricing information in routing sys-
tems has been explored in various contexts and fashions. In
this paper we examine certain fundamental properties important
in the design of such a routing protocol. The importance of
these properties is derived from the underlying economic factors
governing the behavior of the autonomous players.

We view the exchange of pricing information at an interconnect
as a repeated game between the relevant players. For example,
multiple ISPs competing for the business of a CDN. With
this model, we see that various protocol parameters—such as
protocol period, minimum bid size, and unit of measure—
have a significant and important impact on the equilibrium
outcome. We show how these parameters can be used to address
the problem of the repeated dynamic and further that these
conclusions are robust to a variety of practical assumptions
including asynchronous play and heterogeneous networks. These
often surprising results enable protocol designers to appreciate
and leverage these seemingly benign parameters, a result that
has direct practical importance.

I. INTRODUCTION

Internet routing is a dramatic example of the introduction of
economic concerns into an already rich design space. Tradi-
tional design concerns include the impact of system parameters
on such objectives as convergence, robustness, efficiency, and
performance. Today, economic considerations play a chief role
in the routing of traffic in the Internet. Each Autonomous Sys-
tem (AS) is an independent profit-maximizing firm, competing
to generate profit by routing bits on its network. Currently,
this market plays out on two very different timeframes. On
a multi-month or year timeframe, networks and customers
negotiate economic contracts. Then, on a timescale of seconds,
routers direct traffic given a configuration which encodes these
business relationships.

There are several reasons to couple these two processes
more tightly. User-directed routing, such as overlays or multi-
homing, shifts the balance of power, creating tension between
the users and the ASes. This may be best resolved by making
the incentives more explicit in the routing system [1]. Another
reason is that prices make explicit what is implicit in current
routing protocols and router configurations. Today’s inexact
tools create significant manual overhead and increase the
chance for error [2] [3] [4]. By contrast, routing policy based
on the explicit incentives of ISPs may be much simpler to im-
plement. Further, as user-directed routing technologies emerge
and users (e.g., companies or Content Delivery Networks)
use these tools to financial ends [5], these customers may
demand such service from their ISPs. This paper does not
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defend the concept of incentives in routing but instead asks
the question: “How should one design a protocol to convey
pricing information for routes?”

To reason about the behavior of ASes under a dynamic pric-
ing protocol, we employ the analytical framework of repeated
games. Most distributed computations on the Internet are
repeated, often among long-lived players. Repeated games are
therefore an appropriate model for participants’ self-interested
behavior in these systems. In repeated games, the the threat
(or promise) of future behavior can impact current actions,
and therefore the equilibrium of one-shot and repeated games
can differ significantly. This makes repeated game analysis
an appropriate and practical analytical tool for a distributed
protocol that will be implemented by autonomous entities.
By using repeated games, this paper contrasts with most
prior work in this space, namely the celebrated Feigenbaum,
Papadimitriou, Sami, and Shenker (FPSS) [6] analysis.

The relevant setting for our analysis is a particular in-
terchange between a customer and a set of networks. The
customer could be an enterprise, a Content Delivery Network
(CDN), or an access ISP. The customer connects to multiple
networks with each network providing connectivity to the
same set of destinations, as in Fig. 1, and competing for the
business.1 Based on the amount of traffic served, the customer
then directly pays the provider to which it is connected.

This model is similar other applied work (e.g., [5] [7]),
but contrasts with some prior theoretical work on routing
that considers general network topologies. There are several
reasons for this. In practice, the customer does not pay
every ISP in the route, but only the ISP at the first-hop.

1For this reason, we use the terms ’network’, ’AS’, and ’player’ inter-
changeably in this paper.



The relevant competition therefore is between those providers
directly adjacent to the customer. Our model, like [5] and
[7], maintains this bilateral business relationship. Further, if
incentive-based routing is deployed, it will most likely be
applied at particularly useful interchanges (e.g., for CDNs
who have a dramatic ability to shift traffic). They will not
necessarily be used throughout the Internet graph. Of course,
if dynamic pricing is eventually deployed throughout the path,
the analysis of this paper also serves as an important first step.
These points are discussed in more detail in [1].

In our model, the repeated dynamics of routing cause
certain protocol parameters to achieve significant importance.
It is well-known that in general repeated games, there exist
parameters that significantly impact the equilibrium outcome.
However, routing is special due both to the particulars of the
problem and that it transpires via a fixed network protocol.
Therefore, the contributions of this paper include not only a
repeated model for routing—but also formal analysis of the
particular parameters relevant to routing. We summarize those
results here in the form of practical statements:

1) A longer protocol period (a slower protocol) can lead to
a lower price.

2) Using a more granular format (e.g., megabits instead of
megabytes) can lead to a higher price.

3) A wider price field in the protocol can lead to a lower
price.

Given this sensitivity, we also show how protocol designers,
to the degree desired, can bound prices and their sensitivity
to repeated game effects. These conclusions have clear, direct,
and previously unrecognized practical significance for proto-
col designers.

In this paper, we present these results by first examining
a simple model to gain intuition and then exploring more
involved and practical models to demonstrate how the results
generalize. In Sections II and III we present an overview
of repeated games and their impact on routing. We then
present a simplified model of repeated routing in Section IV
which we analyze to derive the above conclusions and provide
clean intuition. We then significantly generalize the model. In
Section VI-A, we examine a larger class of strategies whose
only constraint is that the punishment be at most proportional
to the deviation. This is a very significant generalization,
perhaps even more general than required. In Section VI, we
then consider additional relaxations and generalizations to
our model, such as asynchronous play, confluent flows and
multiple destinations, before ending with a discussion of the
results.

II. THE NOTION OF REPEATED GAMES

Routing is inherently a repeated process – information
is advertised between networks, routing decisions are made,
and bits are routed. New information (perhaps dependent on
actions in the prior period(s)) is then transmitted, and the
process begins again. It is vital that any model of routing –
and particularly any model of routing that includes incentives
– appropriately captures this property. Fortunately, repeated

games are a well understood aspect of game theory. In
this section, we present a targeted overview of the relevant
concepts. For a more thorough summary of the topic, consult
[8] or [9].

A. A Simple Model and Key Tools

A repeated game is the repeated play of a particular stage-
game. Here, we consider the prisoners’ dilemma, a canonical
example which maps nicely to our problem. Two players
simultaneously choose to either cooperate (C) or defect (D),
with stage-game payoffs given by Table I.

TABLE I

GAME PAYOFFS FOR THE PRISONERS’ DILEMMA

C D
C (1,1) (-1,2)
D (2,-1) (0,0)

In the one-shot game, both players will play D. Regardless
of what the other does, it is always in the best interest for a
particular player to defect. The only Nash Equilibrium (NE) of
this game is therefore (D, D). This also holds when the number
of rounds is finite and known, as reverse induction shows that
each stage-game is equivalent to the one-shot game.

When the number of rounds is infinite or unknown, other
equilibrium outcomes are possible. For example, consider the
following strategy for Player 2:

1) Play C
2) If P1 ever plays D then play D forever.

If the game is infinite and players do not discount future
periods, (C,C) is as an equilibrium outcome. The threat of
punishment causes the selfish players to not defect.

This repeated equilibria can occur even when the game is
finite and/or players are impatient. In these cases, we introduce
a discount factor δ (0 ≤ δ ≤ 1). This can capture future period
discounting and/or the probability of the game ending at each
period. In such a case, the players will cooperate only if δ is
sufficiently large relative to the parameters of the game and
the particular strategy being played.

Let u1(.) represent the utility to player 1 of a given ordered
pair of plays. Given our example and sample strategy, mutual
cooperation is an equilibrium only if:

∞∑
t=0

δtu1(C,C) ≥ u1(D,C) +
∞∑

t=1

δtu1(D,D) (1)

which yields:

u1 (C,C) ≥ (1 − δ) u1 (D,C) + δu1 (D,D) (2)

Substituting, the values from Table I, we must have δ ≥ 1
2 in

this example.
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B. Repeated Games Under General Conditions

While the previous example focused on a narrow scenario,
so-called “Folk Theorem” repeated equilibria results have been
shown to be applicable to a variety of contexts. They have also
been shown to be robust to a variety of assumptions – in theory
and practice. These include such weakening assumptions as
imperfect information [10] [11], players of different horizons
[12], and even anonymous random matching [13]. In an
applied work with parallels to our research, Dellarocas applies
repeated game techniques to the design of reputation systems.
[14].

Even more important, we often see the effects of repeated
interactions and signaling in practice. This is discussed in the
case of auctions by Klemperer in [15] [?]. We also see elevated
prices in oligopolies. Later in the paper we will discuss how
the “Price Match Guarantees” offered by many retailers that
we are familiar with also relate to repeated games.

C. Key Terms and Notation

Here we present some standard terms and notation that we
will be using in the rest of the paper:

• Subgame: A subgame is the subset of an original game
beginning at a particular point where all (relevant) history
of play is common knowledge and continuing to the end
of the original game.

• Profit Function: π(pi, p−i): We denote the per stage-
game payoff using the function π(.). The function is
defined by the structure of the game. The parameters
of π(.) are pi, the play of player i, and p−i, a vector
representing the play of all other players. When play of
the other players is symmetric, we can write p−i as a
single number without loss of generality.

• Weakly dominant: A strategy is weakly dominant if
it always does at least as well as any other strategy,
regardless of the strategy selected by the other players.

• Strategyproof: A one-shot mechanism is strategyproof
if truth-telling about one’s private information is weakly
dominant. In the repeated game, we define a mechanism
to be strategyproof if the strategy function that always
plays truthfully is weakly dominant.

III. THE CHALLENGE OF REPEATED ROUTING

The routing game, as depicted in Fig. 1, presents the same
phenomenon as the repeated prisoners’ dilemma example. Un-
der reasonable assumptions, firms can maintain an artificially
higher price if their strategies include appropriately crafted
threats to punish deviators.

It is important to contrast this repeated context with prior
work on routing, namely the celebrated work of Feigen-
baum, Papadimitriou, Sami, and Shenker (FPSS) [6]. They
demonstrate that it is possible to implement the well-known
Vickrey-Clarke-Groves (VCG) mechanism efficiently with a
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Fig. 2. Repeated FPSS Model is Not Strategyproof in the Repeated Game

protocol that resembles BGP.2 Here a strategyproof mechanism
is desirable since networks do not need to expend effort
strategizing about prices and since the selected routes will be
more stable.

Our work builds upon their results by considering their
model in the repeated setting. Thus we summarize it here:

• A set of nodes N, with n = |N |, representing the ASes
• A constant per packet cost ci for each node i
• A traffic matrix Ti,j which is exogenous and fixed (i.e.,

inelastic demand)
• Each AS has infinite capacity

The VCG mechanism, and thus the FPSS implementation,
obtains its strategyproof property through a carefully selected
payment to each node. Each node, i, on a Least Cost Path
(LCP) between a source-sink pair (s, t) is paid ci plus the
difference between the cost of the LCP and the cost of the
LCP if i did not exist. For example, in Fig. 2, node A is on
the LCP from s to t1. For traffic from s to t1 A is paid:

pA = LCP(cA=∞)−LCP +cA = (10+1)−(1+1)+1 = 10

Similarly, B is paid 10 for each traffic unit from s to t2.
However, it is well known that VCG mechanism is not

strategyproof in the repeated game. If A and B both bid 20
until the other defects, each will be paid:

(20 + 10) − (20 + 1) + 20 = 29

We can easily show that it is possible for this to be an
equilibrium for sufficiently patient players. More formally,
there exists a δ̄ such that for all δ ≥ δ̄ this strategy can exist in
equilibrium.3 This demonstrates that although Internet routing
is a repeated setting, the VCG mechanism (and thus the FPSS
implementation), is not strategyproof in the repeated routing
game.

Said differently, it is known that the VCG mechanism is
susceptible to collusion. But in the one shot game, without
explicit agreements, such cooperation is not possible. In the
repeated game, the subsequent periods provide the players

2FPSS were not the first to consider the VCG mechanism for routing [16]
[17]. However, one contribution of the FPSS work is the framing of the
problem with the nodes as strategic agents. This maps to the problem of
AS competition and motivates us to consider the repeated game.

3For completeness, in the one-shot game, bidding 20 is not an equilibrium
strategy. The other player can bid 11 and get all the traffic on both routes for
a price of 29 – yielding a higher profit.
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with a means of obtaining a higher price without any explicit
collusion, side-payments, or constructs of any sort.4 While we
consider a somewhat different model, this intuition about the
VCG still holds. This is very troubling since routing is clearly
a repeated game, not a one-shot game.

IV. A MODEL OF REPEATED ROUTING

The observation the mechanism is not strategyproof in the
repeated game is is worrisome for several reasons. First, to
the extent that the VCG/FPSS prices are fair or desirable, we
have no way of ensuring that they will occur. Second, we do
not initially have any understanding of what the outcome will
now be. Third, we do not understand how design decisions
will impact the outcome.

To address these questions, we analyze a model of the
repeated game. First, we present the formal model. We then
analyze the model to determine the equilibrium outcome.
Finally, we analyze this outcome to descry the impact of the
fundamental design parameters on this outcome. We do not
seek to impose a particular outcome (e.g., minimize price) on
the system, since as we discuss in Section VII, it is unclear
there is a universally correct and acceptable answer. Instead
we focus on understanding the impact of these parameters and
design decisions.

A. Key Intuition and Analytical Approach

Before delving into the model and analysis, we first present
the high level intuition which underlies the results in the
remainder of the paper. Consider a small number of firms
competing for an amount of traffic. At any point in time, each
firm faces a key strategic decision. One strategy is to attempt to
be the low price provider and receive all the traffic. Another
strategy is to offer a higher price to the market, somehow
splitting the traffic with the other providers—but potentially
garnering more profits due to the increased price.

The firm’s willingness to take this second, cooperative,
strategy is a function of several factors. One is the granularity
of the action space – which in this example is amount the firm
needs to deviate to obtain all of the traffic. For example, if the
price is $100 and the firm can obtain all the traffic at $99.99,
it will be more likely to deviate than if it were constrained to
integer prices (e.g., $99). Another factor is the discount factor
which manifests itself in several ways, notably in the length
of the game. If the firm feels that the game will end soon, it
will be more likely to decrease price to get the extra profit.
On the other hand, if it feels the game will last longer, it may
not want to perturb its competitors.

A key insight of this paper is that in practice these factors
are directly determined by parameters of the protocol. In
particular, the width of the pricing field and the representation
used determines the granularity of the action space. Further,
the protocol period determines the number of periods the game
will be played.

4Certainly, with additional such collusive constructs, other equilibria are
possible. We ignore those for the purposes of this paper.

Because this intuition is fundamental to the competitive
dynamics of the situation, the results obtained are robust to
a wide-range of practical and important assumptions. These
include, but are not limited to:

• Heterogeneous networks
• Asynchronous protocols
• Multiple destinations in a network
• Confluent (BGP-like) routing
• Multi-hop networks
• A wide class of reasonable strategies for the firms

In the interest of clarity, however, we do not present a general
model that contains all of these properties. Instead, we first
start with a simple model that captures the essence of the
game, provides for lucid analysis, and demonstrates the key
intuition. After, in Section VI, we return to these assumptions
and formally prove the same set of results for models that
incorporate these more sophisticated assumptions.

B. The Repeated Incentive Routing Game (RIRG)

Our model is based on the FPSS model, presented above.
We extend their model to capture both the repeated nature
of routing and the properties of routing protocols. We also
introduce some simplifying restrictions to make the model
more tractable for the initial analysis and appropriate for the
particular problem in which we are interested. In Section VI
we relax and address many of these assumptions.

The game analyzed in this section is depicted in Fig. 1. This
could be competition among ASes for the traffic of a CDN or
perhaps a third AS. As discussed in the Introduction and in
[1], this analysis examines a particular interchange instead of
a general graph. This is similar to the analysis of [5] and [7].

We note that Shakkotai and Srikant [7] also consider a
repeated model of routing, but in a very different context.
A key difference is that we examine protocol design where
pricing and competition occur electronically, whereas they ex-
amine competition in the abstract (presumably through paper
contracts). Other important differences include the fact that we
consider a much larger space of potential ISP strategies.

We now define the particulars of the game:
Repeated Incentive Routing Game Model

• There is only one source and one destination.
• Each of the N networks connects directly to both the

source and the destination with exactly one link, as
depicted in Fig. 1.

• Each network has an identical, constant per-packet cost c
for transiting the network5, identical quality, and infinite
capacity.

• Bids are represented as fields in packets and thus are
discrete. The maximum granularity of the representation,
equivalent to the minimum change in a bid, is represented
by b. For simplicity, we assume that c is a multiple of b.

5We note that this maps cleanly to average-based billing, a common billing
technique in practice. A richer discussion of volume-based versus rate-based
models and their prevalence in industry is beyond the scope of this paper.
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• Each AS is perfectly-patient with respect to the time value
of money.

• The low cost bid in each period is common knowledge.
Specifically, before the next time an AS advertises a price,
it knows the lowest price bid in the prior round.

• The game is finite. The game length is represented as
an exponential random variable with mean D. E(D) is
known to all players but the actual value is unknown
to the source or any of the other ASes. The duration
corresponds to the expected period of time for which the
other factors will be stable.6

Play of the Game
1) The game proceeds in a series of rounds, each of length

d, a constant of common knowledge. For simplicity, we
assume that D is a multiple of d. Thus, we can relate d
and D as:

d = D(1 − δ) (3)

where (1 − δ) is a constant representing the per-period
probability of the game coming to an end.

2) At the start of each round, each of the N players
advertises its per-packet price simultaneously.

3) For the entire period, traffic is routed over the provider
with the lowest price. In the event of a tie, traffic is split
evenly among the providers with the lowest price.

4) Each provider is paid for the number of packets that
transit its network. The rate paid for each packet is the
price it advertised at the beginning of the round (first
price auction).7

C. Equilibrium Notion and Strategy Space

It is important to refine the space of strategies and equilibria,
since in a repeated game, the set can be quite large. Our
significant refinement is to consider only strategies which are
subgame perfect. Subgame perfection, defined below, means
that in every stage game, all players must play a strategy that
is optimal, given the remainder of the game. It thus takes the
entire discounted stream of payments into account, precluding
myopic strategies but permitting long-term thinking. While
not vital, for clarity, we also restrict ourselves to symmetric
equilibria, where all players play the same strategy, and pure
strategies. This allows us to speak of a single strategy being
played.

Subgame Perfection: A strategy α is subgame perfect if i) α
is a Nash equilibrium for the entire game and ii) α is a Nash
equilibrium for each subgame.

In a repeated, simultaneous-move game such as ours, the set
of Subgame Perfect Equilibria (SPEs) can still be quite large.
One class of strategies are “trigger price strategies” [11]. In
this context, players offer some desirable price, p∗, so long as
all other players do. If a player deviates, offering some p′ <

6The property of having stability for a sufficiently-long, finite, and un-
known period of time corresponds very well to the true nature of Internet
interconnects.

7Payment mechanisms, enforcement, etc are outside the scope of this game.

p∗, the other players punish the deviating player by playing
some p̂ < p∗. In general, trigger price strategies allow for
the players to return to p∗ after some period of time. The
intuition of these strategies is that in equilibrium the threat of
punishment can maintain a higher price.

While there is empirical studies supporting the existence
of such behavior, such a severe and coordinated practice
may seem implausible in many contexts. For example, in the
bandwidth market, we have not observed such wild swings.
Instead, as costs decrease and competitive pressure has in-
creased, we have seen prices move down rather smoothly and
steadily. Such a phenomenon may be better modeled by a
price matching strategy where players play the lowest price
observed in the prior period.

The key difference between these two classes of strategies
is how we perceive the reaction to a deviation. To the extent
that it is a punishment, trigger-price strategies are appropriate.
To the extent that it is simply a protective reaction or learning
mechanism, price matching seems more appropriate. Price
matching may even be too severe, as more appropriate strategy
may be to price match for a certain period before returning to
p∗. However, in all strategies, deviation of a player leads to
decreased profit for some number of future periods.

We can generalize this space of strategies. In particular, in a
parameterized space, price-matching is a mild punishment for
an infinite amount of time. By parameterizing the punishment
time and severity, we can consider a larger class of strategies.
In this paper, motivated by space and clarity, we first discuss
and analyze price matching strategies. However, in Section
VI-A, we show that our results hold for a much larger class
of strategies, namely all strategies where the punishment is
no greater than a constant multiple of the deviation. (This is
important as it also permits strategies that return to p∗.)

We are now ready to formally define the price-matching
strategy:

Price Matching (PM) Strategy
S1) At t = 0, offer some price p0

i For t > 0:
S2) pi = max(c,minj(pt−1

j ))
where pt

j is the price offered by player j in period t.
While the second step of the strategy is clear, it is not

immediately obvious how a player should select the initial
p0

i . From our definition of subgame perfection, we have that
the player cannot benefit from deviating. From price matching,
we have that in equilibrium pt = p0 ∀t. (Thus, we drop the
superscript notation and simply write p.) This means that if
price matching at p is an SPE then:

∞∑
t=0

δtπi(p, p) ≥ πi(p − b, p) +
∞∑

t=1

δtπi(p − b, p − b) (4)

for a given (δ, b). Just as Eqn (1) simplifies to (2), we can
simplify Eqn (4) to:

πi(p, p) ≥ (1 − δ)πi(p − b, p) + δπi(p − b, p − b) (5)

Informally, this condition says that we will accept p only if
the payoff to playing p forever is greater than the payoff from
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deviating once and suffering the consequences. The πi(p, p)
term represents the payoffs of playing p; (1 − δ)πi(p − b, p)
is the weighted payoff to deviating by some amount b; and
δπi(p− b, p− b) captures the payoffs in the future. Note that
it is strictly dominant to make the smallest possible deviation
from p. Thus, we use b, the size of the minimum bid change,
as the magnitude of the deviation without loss of generality.

Of all the values of p that satisfy Eqn (5), we consider the
profit-maximizing value, which we define to be p∗. Therefore,

p∗ = max
p

s.t. πi(p, p) ≥ (1−δ)πi(p−b, p)+δπi(p−b, p−b)
(6)

(We solve for p∗ explicitly for our game by expanding π(.) in
the following section.)

To show that PM is SPE, we will use the one-deviation
principle which states that a strategy is a SPE if and only if it
is not possible to profitably deviate in exactly one stage-game.
This allows us to consider simple one-stage deviations as
opposed to more complicated multi-stage deviations. We state
the principle, whose proof can be found in [9], below:

Theorem 1 (One Stage Deviation Principle): In an infinite
horizon multi-stage game with observed actions where the
payoffs are a discounted sum of per-period payoffs and the
per-period payoffs are uniformly bounded; strategy profile α
is subgame perfect if and only if it satisfies the condition that
no player i can gain by deviating from α in a single stage and
conforming to α thereafter.

Lemma 1: PM is a SPE.
Proof: First we note that the RIRG game satisfies the

technical conditions of the principle and the fact that the game
is finite ensures that the discount factor, δ < 1. Therefore, we
can apply the theorem and consider only one-stage deviations.
We look at each stage of the specified strategy:
S1) By construction, assuming that other players offer p∗,

it is optimal to offer p∗. By definition of p∗, bidding a
lower value decreases the discounted stream of profits.
A higher price leads to no profits in this period and no
prospect of higher profits in the future.

S2) Again by construction, there is no benefit to decreasing
price. Likewise, increasing price given that others are
playing PM does not help.

Since we have examined all one-stage deviations, we have that
PM is a SPE.

D. Analysis of the Model

With a model and equilibrium notion, we can now examine
the equilibrium conditions. The first step is to derive an explicit
expression for p∗ in terms of the parameters of the game. 8

Theorem 2: In the RIRG, the unique equilibrium price when
all players play Price Matching is given by:

p∗ =
b (δbN − δb − N)
1 − N + δN − δ

+ c

8As discussed, price is discrete. However, for notational simplicity, we
analyze the continuous variable p such that the market price is � p

b
�b.

TABLE II

SUMMARY OF KEY TERMS

Term Meaning
N Number of firms competing for the traffic
b Minimum bid change size
p Price
p∗ Profit maximizing price

π(.) Per-firm profit function
δ Per-period chance of the game ending
d Period of the protocol
D Expected stability of network topology
T Total amount of traffic

Proof: Since the firms seek to maximize profit, we
consider the profit-maximizing price matching strategy, which
bids p∗ as given by Eqn (6). This means we have:

πi(p, p) = (1 − δ)πi(p − b, p) + δπi(p − b, p) (7)

where p is the price advertised.
Define m = p−c for notational simplicity, and T as the total

amount of traffic. We now expand πi based on the definition
of the game:

πi(pi, p−i) =




(
T
N

)
m, pi = pj ,∀i �= j

T ∗ m, pi < pj∀j �= i
0, otherwise

This yields:(
T

N

)
m = (1 − δ) (m − b) T + δ

(
T

N

)
(m − b) (8)

Solving, we have:

m =
b (δN − δ − N)
1 − N + δN − δ

(9)

or

p =
b (δN − δ − N)
1 − N + δN − δ

+ c (10)

Since all players are homogeneous and since we consider
only symmetric equilibria, this is thus the unique equilibrium.

V. UNDERSTANDING THE RESULT

Given an expression for the equilibrium price, we turn to
the practical questions that we seek to understand.

A. Protocol Period

We examine the model parameter tied to the period, δ,
holding the other factors (including D) constant. Intuitively, it
may seem that the period of the game should have no impact
on prices. Alternatively, a shorter period–corresponding to a
faster protocol–would perhaps help to keep the market more
competitive. This is not necessarily the case.

Lemma 2: The protocol period and the market price are
positively correlated – or ∂p

∂δ > 0.
Proof deferred to appendix.
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Recall now that d = D(1 − δ) → ∂d
∂δ < 0. This coupled

with Lemma 2 yields
∂p

∂d
< 0 (11)

In other words, as the protocol period increases, the price
decreases – a surprising and initially counterintuitive result!

Careful consideration provides us with the rationale behind
this conclusion. When a player deviates, it enjoys a one-
time increased payoff at the expense of diminishing the future
stream of payoffs. Consequently, the longer the period is be-
fore a competitor can match the price, the bigger the benefit to
deviating. Furthermore, a longer period means fewer expected
future periods. As a result, as we increase the protocol period,
we increase the propensity for a player to lower its price.
It is well-known in the repeated game theory of oligopolies
that fewer periods can increase price. But it is interesting
to realize that the protocol period, typically analyzed in the
context of information flow and convergence, in practice also
defines the number of rounds and thus significantly impacts
the equilibrium.

We depict this relationship between p and δ by graphing Eqn
(10) in Fig. 3. As can be observed, p is strictly increasing in
δ but converges readily to c + Nb

N−1 as δ → 0. 9

Although this phenomenon may seems counter-intuitive at
first, most consumers are familiar with it in the form of “Price
Match Guarantees” offered by many major retailers. [18] [19]
While the policies vary, the notion is that Firm A will match
any competitor’s advertised price that is lower than A’s price.
While there are other factors at play in these markets, this
practice can be abstracted in the notion of a protocol period.
Instead of waiting some period to match the competitor’s price
(e.g., in the next week’s circular, in the following day, etc.)
a price match guarantee effectively brings the period to zero.
Once a firm lowers its price, the other firm effectively matches
price immediately. Thus, one result of these policies is to
dissuade competitors from lowering price, since, it can be

9For N > 2, c + Nb
N−1

yields c + b when discretized to a multiple of b.
In the one-shot game bidding c or c + b are both Nash Equilibria. We return
to this subject in Section VI-C.

TABLE III

IMPACT OF PROTOCOL PARAMETERS ON PRICE

Variable Impact on Price
N : Number of players Decreases
b : Minimum bid size Increases

d : Period of the protocol Decreases
D : Stability period for the topology Increases

TABLE IV

THE IMPACT OF A $1 PRICE CHANGE WITH MEGABYTE AND MEGABIT

REPRESENTATION FORMATS

Format Traffic Price Revenue New Price New Revenue
Mbits 1000 $100 $100,000 $99 $99,000

MBytes 125 $800 $100,000 $799 $99,875

argued, it will not provide that competitor with any additional
revenue.

B. Additional Parameters

We now consider the other relevant parameters in similar
fashion. For each parameter found in the expression for
the equilibrium price, we present the main result and some
intuition to provide better understanding. The results are
summarized in Table III.

1) Minimum Bid Size, b: Similar to the analysis of period,
we can show that ∂p

∂b > 0—as we increase the minimum
bid size, the equilibrium price increases. This again comes
from the firm’s decision which weighs the one-time benefit of
deviating versus the longer-term cost. The less a firm is able
to decrease p and still get all the market, the more profit it
garners in the short-term and the less punishment it suffers in
the long term. Therefore, it is more likely to deviate.

It is important to understand that this is more than just a
matter of precision. Fig. 3 plots equilibrium price versus δ
for N = 2, b ∈ {0.01, 0.05, 0.1}. One can note not only that
p changes significantly but moreover that the change in p is
qualitatively greater than the change in b.

Generally in practice, the minimum bid size is not an
explicit parameter but rather it implicitly manifests itself in
two protocol parameters. The first is the width of the pricing
field. In most any protocol this width is likely to be fixed.
Here we see that increasing the width of the pricing field can
decrease the price in the system. Another means by which the
minimum bid size manifests itself is via the unit of measure.
Given a fixed granularity on prices, it makes a difference if we
represent quantities in megabits or megabytes. For example,
consider a system in which prices are set at whole dollar
increments. Using megabytes as opposed to megabits provides
for larger price values and thus more granularity in the prices,
holding all other parameters constant. In Table IV we see that
a $1 decrease when using megabits causes a 1% decrease in
revenue whereas a $1 decrease when using megabytes causes
a 0.125% decrease in revenue. Per the logic outlined above,
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we see that using megabytes instead of megabits can lead to
a lower price.

2) Stability Period, D: The stability period is likely not
under the control of the protocol per se, but it is still useful
to understand its impact on prices, holding other parameters
(including d) constant. We have that ∂p

∂δ > 0. Since d = D(1−
δ) → (1− d

D ) = δ we have that ∂δ
∂D > 0. Thus, ∂p

∂D > 0. This
should come as no surprise given the prior two examples. As
we increase the expected duration of the game, the relative
importance of the stream of future payoffs increases. Thus, a
player is less willing to deviate.

3) Number of Players, N: While the number of players
is generally assumed to be constant, it is useful to note that
similar to the other variables, we can show that ∂p

∂N < 0. This
conclusion is perhaps the most likely to be obvious a priori. As
the number of firms increases, the profit is split among more
players. Thus, as the number of firms increases, so too does
the benefit from a one-stage deviation–and thus the propensity
to deviate. This corresponds with the basic intuition that with
more firms we approach perfect competition.

C. Discussion

Because the rest of the paper consists of various relaxations
and further analysis of the results presented above, we pause
here to make a few observations:

• There are several protocol parameters which – unexpect-
edly – may significantly impact the equilibrium price.
These include the protocol period, the width of the pricing
field and the unit of measure. Unlike some properties that
one might readily be able to identify and reason about
(such as the number of players); a priori it is unclear
that these parameters have any affect. Further, it is unclear
which way they push the equilibrium price. These often
counter-intuitive results are therefore quite revealing.

• The conclusions about these parameters are directly
applicable to system design. Understanding the impact
of these parameters is a useful result. What is perhaps
most important, however, is that a priori a protocol
designer may not have even considered these parameters
as relevant at all! Therefore, merely understanding that
they are relevant, let alone understanding how they impact
the equilibrium, is an important conclusion.

• We have not shown that these repeated outcomes will
always occur, but still believe consideration of the pa-
rameters is important. We have shown that it is possible
to obtain increased prices in repeated equilibria, but have
not shown that this result is robust to all variations
to our model. In Section VI, we will consider various
relaxations to our model and show that similar results can
be obtained. However, in a general setting, it is possible
to construct degenerate scenarios in which such increased
prices are not possible. Therefore, our argument is not
that increased prices will always result if the parameters
are not considered. Instead, we argue that in general (and
in changing) environments, such outcomes may result,
and in some cases will likely result. In practice, it will be

the rare case when one is certain that such outcomes will
not occur. Since a good protocol should be applicable to a
wide range of circumstances, we therefore believe that the
protocol designer should and must take these parameters
into account.

VI. IMPORTANT GENERALIZATIONS

In this section we show that the key intuition and spirit
of the results from the simple Repeated Incentive Routing
Game (RIRG) hold in more general networks, mechanisms,
and/or assumptions. In all cases examined, while the model
is more general, the key intuition (presented in Section IV-A)
from the simpler example still holds. Consequently, the core
results— the impact of the granularity of the action space
and its manifestation in the protocol parameters—also carry
over. The underlying reason for this is that in all of the games
firms face the same decision: attempt to be the lowest-priced
provider and take the whole market, or split the market at a
higher price with multiple firms.

In this section we present four key generalizations. First
we significantly expand the strategy space, allowing the ASes
significantly greater flexibility. We then consider asynchronous
play (vital for routing protocols), a set of FPSS-like assump-
tions including confluent flows, multiple destinations, and a
second-price auction, and heterogeneous costs. In the first
three cases, where the proof is particularly insightful, we
present a full formal proof of our results. In the case of
heterogeneous costs, where the extension is relatively simple,
we present only a discussion of the modification.

A. Generalizing the Strategy Space

There are several reasons why the strategy considered thus
far, price-matching, may be too restrictive. Perhaps most
important, it assumes that prices never return to the original p∗.
Further, the punishment phase is limited at p−b. For example,
we could relax both of these assumptions and consider a set of
strategies which punish at p−kb for T periods before returning
to p∗.

In this section, we generalize our results to a larger set of
strategies, which we call porportional-punishment strategies.
The punishment of these strategies is porportional to the
deviation, and we permit prices to return to some higher price,
including p∗. This is not the only sufficent condition but one
that we believe is the most general and more important most
indicitive of strategies that would be used in practice.10 For this
set of strategies, we seek to understand the highest possible
market price, p̄, given a fixed (N, δ, b) tuple. We derive a
bound and show that this bound is tight. Using this bound
we can show that our conclusions regarding the parameters
still hold. Further, we can show that it is possible for the
protocol designer, if she indeed desired, to bound prices using
the parameters to pI + ε where pI is the price in the one-shot,
first-price auction.

10If anythng, we believe that our model here is in fact too general, but that
is not a problem in this context.
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To begin our analysis, we introduce some new notation:
Let αt

h be the price proscribed by strategy α in period t given
history h. Let pt

i be the bid of player i in period t. Finally, let
D(σ, h, s) = {t > s | ∃ pt

i < αt
ht−1}. These are the periods

where there has been a deviation.
We now define ∆ which represents the set of all one-stage

deviations for a strategy σ.
Defintion: For all history pairs (h, ĥ, σ) ∈ ∆

1) σ is a SPE strategy.
2) ht = ĥt ∀ t < t0
3) In t0, ∃ p′ = pt

i < αt
ht−1

4) D(σ, ĥ, t0) = D(σ, ĥt, t0)

Informally, this says that the two histories are the same
until t0 (2), there is a deviation at t0 (3), and that there are no
further deviations (4). We now define the set of Porportional
Punishment Strategies (PP) as follows:
Definition: σ ∈ PPk iff σ is a symmetric SPE and
∀(h, ĥ, σ) ∈ ∆, ∀t > t0, ∀p′:

σt
h − σt

ĥ
≤ k(σt0

ĥ
− p′)

This captures our definition of porportional punishments.
We now turn to analyzing the equilibrium conditions. To do
so, we introduce two new terms: pα and p̄k:

Definition: pσ is the highest price obtained by σ in any period,
that is:

pσ = max
∀t,h

σt
h

Definition: We define p̄k to be the maximum price for all
strategies in PPk. More formally,

p̄k = max
α∈PPk

pα

Theorem 3: If σ ∈ PPk, then pσ ≤ b(δN−N−δk)
(δ−1)(N−1) . Further this

bound is tight, that is, ∃ ᾱ such that pᾱ = p̄ = b(δN−N−δk)
(δ−1)(N−1) +c.

Given this bound of p̄k, we can also analyze the bound just
as we did for the bound we derived for price matching. Simply
by taking the partial derivatives, we see that we get the same
qualitative results and resulting intuition.

Theorem 4: In the RIRG, if players play strategies in PP, the
value of p̄ varies with the parameters (δ, b,N) in the same
manner as the optimal price matching price. That is: ∂p̄

∂δ < 0,
∂p̄
∂b > 0 , ∂p̄

∂D > 0 , and ∂p̄
∂N < 0.

Finally, we can consider the implementation design question
of how to limit prices.11 Here we obtain the following result:

Theorem 5: For an instance of the RIRG with N players
playing strategies in PP, ∀ ε > 0 there exists a tuple (δ, b)
such that pm < c + ε where pm is the price realized in the
market.

11Of course, as we discuss in Section VII, limiting prices is not necessarily
a desirable goal.

B. Asynchronous Play

The assumption of synchronized play in the RIRG clearly
does not match the reality of Internet routing. Moreover even
if synchronization were desirable, it would be a hard property
to achieve. While synchronous play is the normal model
for repeated games, a limited amount of recent work has
explored asynchronous models of repeated games, albeit in
other contexts [20]. While the analysis of the previous section
relied on this assumption, the key intuition of the problem
(presented in Section IV-A) does not. Therefore, we are able
to obtain essentially the same results in the asynchronous case,
which we present below.

While the analysis below suggests that the asynchronous
play does not change the game, that is not correct. Indeed,
the asynchronous play has a significant impact on the set
equilibrium strategies that can be played. For example, the
grim strategy of setting price equal to cost in response to a
defection is no longer a SPE strategy.
Lemma 3: If σ ∈ PPk, then pσ ≤ pσ ≤ kb(−Nφ+Nφδ−δN )

1−Nφ+Nφδ−δN in
the asynchronous game. Further this bound is tight, that is, ∃
ᾱ such that pᾱ = p̄ = pσ ≤ kb(−Nφ+Nφδ−δN )

1−Nφ+Nφδ−δN

Proof: We know that in equilibrium:
∞∑

t=t0

δtpσ ≥ (pσ − b)N +
∞∑

t=t0+1

δtβ(i,t)(pσ − b, t0, σ−i)

where β(.) specifies the continuation payoff to player i for a
deviation at t0 with other players playing σ−i. Since σ ∈ PPk,
let us consider the most severe punishment. This yields:

∞∑
t=t0

δtpσ ≥
N−1∑
i=t0

(pσ − kb)N
(i + 1)

δi + δN
∞∑

t=t0+N

δi(pσ − kb)

(12)
For notational simplicity, we define:

φ =
N−1∑
i=0

δi

(i + 1)

This is the sum of the first N terms of the Harmonic series
with discounting.) We can restate Eqn.(12) as:

pσ ≥ (1 − δ)φ(pσ − kb)N + δN (pσ − kb) (13)

Solving for pσ yields:

pσ ≤ kb(−Nφ + Nφδ − δN )
1 − Nφ + Nφδ − δN

(14)

From this Theorem, we can easily derive our two conclu-
sions:
Theorem 6: In the asynchronous RIRG, if players play
strategies in PP, the value of p̄ varies with the parameters
(δ, b,N) in the same manner as the optimal price matching
price. That is: ∂p̄

∂δ < 0, ∂p̄
∂b > 0 , ∂p̄

∂D > 0 , and ∂p̄
∂N < 0.

We then can show:
Theorem 7: For an instance of the asynchronous RIRG with
N players playing strategies in PP, ∀ ε > 0 there exists a tuple
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(δ, b) such that pm < c + ε where pm is the price realized in
the market.

C. FPSS-Like Assumptions

The RIRG assumption of splittable flows and a single
destination maps to a variety of practical contexts. For ex-
ample, many ISPs offer a single price for all Internet routes,
making “the Internet” the single destination. Further, while
flows over BGP are confluent, routing technologies such as
multihoming and overlays enable customers to split traffic
among the providers, by time or destination. This split can be
done in time or by selecting some granularity smaller than the
destination advertised by the ISP. Nonetheless, it is insightful
to relax both of these assumptions. 12

We formally define the new game below. In summary there
are three key differences as compared to the RIRG:

1) Flows are confluent
2) There are two destinations
3) A second-price auction sets the allocation and prices

These three relaxations map directly to the FPSS model and
our counter-example from Section III. Consider, for example,
the limited topology depicted in Fig. 4 with two players. As
in FPSS, each provider advertises a single bid for its network.
Despite the changes from the RIRG, the players face a similar
decision: bid low to obtain more traffic or concede one link to
the other player in a repeated equilibrium. We define this game
formally as a game among N players below. Each player Pi

will be the low cost provider to some destination ti.
We define the game formally as:

Model: N -Player Repeated VCG Routing Game
• There is only one source and N destinations, with T

N units
of flow from s to each of t1, ..., tN .

• There are N networks in the game (P1, ..., PN ), each
connected to the source. These N networks have identical
cost c and all paths have equal quality.

• Between the Pis and the tis are other networks providing
connectivity. Each network has a fixed price, ch or cl

where ch > cl. Each Pi is connected to ti via a network
with cost cl and connected to tj , j �= i, via a network
with cost ch.

• Each AS is infinitely patient with respect to the time value
of money.

• All bids are common knowledge as in the prior game.
• δ models the finite but unknown duration

Play of the Game
1) The game proceeds in a series of rounds, each of length

d, a constant that is common knowledge.
2) At the start of each round, each of the players advertises

a single bid simultaneously. This value represents a
(perhaps truthful) per-packet cost.

3) For the entire period, for each destination, traffic is
routed over the provider with the lowest bid. In the event

12Note that it is natural to relax these two assumptions together. Relaxing
one without the other produces a game that is either a generalization of the
RIRG or game equivalent to one-shot Bertrand competition.

s

A

B

Least Cost Path

Alternative Path

c

c

c

c

c
t2

t1

L

H

cL

H

Fig. 4. The N -Player Repeated VCG Routing Game with N = 2. With
cH > cL, A is on the LCP to t1 whereas B is on the LCP to t2.

of a tie, traffic is sent to the lexicographic first network.
Thus, all flows are confluent.

4) Each provider is paid for the number of packets that
transit its network. The price per packet is set by the
(second-price) VCG mechanism.

We define the critical price here in a similar fashion to the
prior game:

p∗ = max
p

such that πi(p, p) ≥ (1−δ)πi(p−x, p)+δπi(p−x, p−x)

for a given tuple (δ, π) and any x ≥ b. However, note that
the profit function, π(.), and selection of p∗ is more subtle
than before:

• The single bid requirement forces the minimum profitable
deviation to be larger than the minimum bid size. For
example, if two players are at a given p and P1 decreases
its price by some ε < ch − cl, there will be no benefit to
this deviation.

• The deterministic tie-breaking causes an asymmetry. A
player later in the lexicographic ordering must exhibit
a (slightly) larger price decrease to gain the additional
traffic.

• The nature of the second price auction is that if (p − x)
is the lowest bid, then πi(p − x, p) = Tp not T (p − x)
as in the first-price auction.

Despite these differences, we are able to obtain a similar
result for the protocol period, namely that ∂p

∂δ > 0.
Theorem 8: In the N-Player Repeated VCG Routing
Game,∂p

∂δ > 0.
Proof: Deferred to Appendix

While the impact of δ is the same in the 1st and 2nd
price mechanisms, the impact of b is different. One difference
is that unlike the first price auction, a deviation must be
larger than the minimum bid size to have impact. That is, the
minimum bid size is not relevant in determining equilibrium
price (beyond rounding). This can be viewed as a positive
or negative. In the repeated first price mechanism, as δ → 0,
pI → b N

N+1 +c (Theorem 5). However, in the repeated second
price mechanism, as δ → 0, pII → y(N − 1) + c (Lemma
4). Both prices correspond to the maximal values of the set of
undominated strategies in the one-shot game. Thus, from an
implementation perspective, while it is possible to force pI ≈ c
independent of topology, pII may be significantly bound away
from c even with the slightest possibility of repetition. These
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elevated prices and lack of control can be viewed as additional
weaknesses of the VCG mechanism in the repeated game.13

D. Heterogeneous Costs

Above we saw that cooperation is possible in spite of –
and in fact facilitated by – heterogeneous cost structures.
Examining heterogeneous costs provides better insight into the
strengths and weaknesses of our result.

With heterogeneous costs non-trivial repeated equilibria can
and still may exist. Let the function p∗(c) evaluate to the p∗ in
a game with homogeneous costs of c. Consider a two player
game where c1 < c2. Here, P1 has the choice of i) selecting a
repeated equilibrium in which the market is split or ii) pricing
below c2 and taking the whole market. This corresponds to
bidding p∗(c1) or c2− b respectively. For example, if we have
c1 = 1, c2 = 1.1, and p∗(1) = 3, then we would expect
the equilibrium price to be 3, even though P1 could undercut
and price at say 1.09.14 This logic can be generalized to derive
an equilibrium price in the case of heterogeneous costs. Given
this price, the results from prior sections – the impact of δ and
b in the first price auction and the impact of δ in the second
price auction – still hold. Further, in practice, hetrogenous
costs can aid in allowing firms to signal and cede one market
to a competitor in exchange for another market (e.g., domestic
vs international).

This example also underlines a lesson for protocol design-
ers. With the assumption of heterogeneous costs, it is possible
to construct examples where the repeated outcome is the same
as the static outcome and the protocol period and field width
are not of great importance. However, there still exists a large
class of instances where the repeated case will be the relevant
one. Because one can rarely be sure about the parameter range
over which a designed protocol will be run, consideration of
results presented in this paper are therefore important.

VII. DISCUSSION AND FUTURE WORK

The key conclusion of our work is that basic properties of
the underlying protocol can have a significant impact on
the equilibrium price. Robust to multiple assumptions and
conditions, this leads us to several interesting conclusions and
grounds for future work:

1) Tools for Protocol Designers: We have endowed the
protocol designer with a set of new tools, perhaps
previously hidden. For example, in a simple first-price
setting we can achieve lower prices through a longer
period (increase δ), a wider price field in the protocol
(smaller b), and/or a less granular bandwidth using
(smaller effective b). Holding other concerns aside, this
means a consumer who has control over the protocol
and seeks to limit price may find these useful.

2) New Unavoidable Questions for Mechanism and Market
Selection: These tools are a double-edged sword as they

13Note that this is in addition to the reasons outlined in [21] which relate to
information revelation. In this game, all information is common knowledge.

14Note that in this case 3 < p∗(c2). So the profit to P2 is less than if both
had cost c2.

raise questions of what the designer should do. For
example, the interests consumers and suppliers may be
at odds with each other. This could induce protocol
alterations or issues of market and mechanism selection.
This is a classic “tussle” [22].
Further troubling is that these parameters are unavoid-
able. Removing period restrictions creates a period im-
plicitly defined by the players’ reaction time. Likewise,
in any networked protocol, there is a maximum level of
granularity. This poses interesting questions regarding
the possibility of flexible and/or self-adapting protocols
and frameworks.

3) A Bridge Between the One-Shot and Repeated Models:
The parameters yield an understanding of the relation-
ship between the one-shot and repeated routing games.
The FPSS result and the counter-example presented from
Section III are not different games, but rather two ends
of a spectrum of games.

4) The Importance of Repeated Games: Another key insight
from our work is the importance of repeated games.
Almost all networking applications have an element of
repetition. In this work we have seen that consideration
of the repeated game is vital as the outcomes can
be qualitatively different from the one-shot game. We
have also seen that the repeated model can prove to
be a useful analytical tool with conclusions of practi-
cal importance. Our current research explores repeated
games in the context of additional practical networking
problems.

Finally there are several assumptions in our models that can
be relaxed. In this paper we do not examine the case of finite
capacity, elastic demand, nor full networks of active players.
We believe that the existence of non-trivial repeated equilibria
and the relationships presented in this paper are robust to these
relaxations. Nonetheless, there is room here for considerable
future work. Furthermore, the correct equilibrium notions for
repeated games is an open question; and it would be interesting
to understand the interaction between model assumptions (e.g.,
asynchronous play) and the set of SPE strategies.

VIII. SUMMARY

In this paper we develop a model of incentive (or price)
based routing that captures the notion of repetition, which is
a vital aspect of practical applications. We see that the FPSS
result does not directly hold here since it is not strategyproof
in the repeated game. For a simple general model we are able
to show that while prices can increase in general settings, their
value is tied closely to certain, seemingly benign, properties
of the underlying protocol. As such, we see that the protocol
designer has greater control on the market than otherwise
realized. We also show that these conclusions hold in more
general settings, such as a 2nd price auction, the case of
multiple destinations, and the case of heterogeneous costs.
Taken together, these results present an interesting and novel
relationship between routing protocol design and economic
considerations of practical importance.
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APPENDIX

Proof of Lemma 2
The protocol period and the market price are positively
correlated – or ∂p

∂δ > 0. Proof: From equation (9) we
have:

∂p

∂δ
=

b

(−1 + δ)(−N + Nδ − δ + 1)
(15)

We seek to show that this ratio is positive. Clearly, the
numerator b > 0 and the first term of the denominator
(−1 + δ) < 0.

Considering the other term of the denominator, we have:

(−N + Nδ − δ + 1) = N(δ − 1) + (1 − δ)

= (1 − δ) − N(1 − δ) = (1 − δ)(1 − N)

Since (1− δ) > 0 and (1−N) < 0, we have (−N +Nδ−
δ + 1) < 0. Thus,

∂p

∂δ
=

+
(−)(−)

> 0

as desired.

Proof of Theorem 3
Proof: Since σ is a SPE, we know that the one-stage deviation
property must hold for every history and time step. Therefore,
we examine a given strategy at a given decision point.
For any σ cooperating in a period yields pt

σ−c
N whereas

deviating yields pt
σ − c. Therefore, the benefit of deviating

is:

B = (pt
σ − b) − pt

σ

N

The cost to this one-stage deviation is:

C = δ
∑
t>t0

δt
(
σt

h − σt
ĥ

)

Since σt
h − σt

ĥ
< kb, we therefore have:

C ≤ δkb

(1 − δ)

The one-stage deviation property holds iff B ≤ C or:

(pt
σ − b) − pt

σ

N
≤ δkb

(1 − δ)

We can rewrite this in standard form as:

p ≥ (p − b)N(1 − δ) + δ(p − kb)

which we can solve to yield:

p ≤ b(δN − N − δk)
(δ − 1)(n − 1)

Further, if σt
h − σt

ĥ
= kb, then this expression holds with

equality.
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Proof of Theorem 5 For an instance of the RIRG with N
players playing strategies in PP, there exists a tuple (δ, b) such
that pm < c + ε.
Proof: From Theorem 3 we have that the highest possible
price in PPk is given by the strategy which punishes by a
factor of k in each period which is in turn bound by:

pm ≤ b(δN − N − δk)
(δ − 1)(N − 1)

+ c (16)

This bound also holds for any equilibrium even when
players play different SPEs as any punishment weaker than
consistently punishing by k will only decrease the market
price.

Therefore if we seek to have pm < c + ε, we can set:

ε >
b(δN − N − δk)
(δ − 1)(N − 1)

(17)

which can be readily solved.
In particular, for a fixed b we have:

δ <
−εN + ε + bN

−εN + ε + bN − bk
(18)

and for a fixed δ we have:

b >
ε(δ − 1)(N − 1)
δN − N − δk

(19)

Lemma 4: In the N-Player Repeated VCG Routing Game,
the equilibrium price is given by:

p∗ =
yN(2N + δN − 2δ − 1) + δ(Nc − y − c) − y + c

(1 − δ)(1 − N)
Proof: Define y = ch − cl.

We can expand π(.) based on its definition:

π1(p1, p2) =




T (p2 − c), p1 ≤ p2 − y
T
2 (p2 + y − c) , p2 + y ≥ p1 > p2 − y

0, otherwise

where y = ch − cl. Due to the deterministic selection in a tie,
π2(.) is slightly different:

π2(p1, p2) =




T (p1 − c), p1 < p2 − y
T
2 (p1 + y − c) , p1 + y > p2 > p1 − y

0, otherwise

These values follow directly from the VCG calculation.
Note that per the VCG calculation, if πi(pi, p−i) > 0 it is
dependent only on p−i.

We now turn to the question of the equilibrium conditions.
For the purposes of this analysis we focus only on the first
player (lexicographically). This is because the second player
(which must make a larger sacrifice) will deviate if and only
if the first player will. We know that in equilibrium, bidding
p must be better than deviating by some x, or:

T

2
(p + y − c) ≥ (1 − δ)T (p − c) +

T

2
δ(p − x − c)

where x ≥ y. Since each side is monotonic in p, we consider
only the case where x = y to yield:

(p + y − c) ≥ (1 − δ)2(p − c) + δ(p − y − c)

We can solve to obtain:

y(1 + δ)
1 − δ

+ c ≥ p (20)

Thus, in equilibrium, we have:

p∗ =
y(1 + δ)
1 − δ

+ c (21)

And the VCG price, pV is given by:

pV = p∗ + y =
y(1 + δ)
1 − δ

+ 2c + y (22)

Proof of Lemma 8
Proof: We take the partial derivative from Eqn(22):

∂pV

∂δ
=

y

1 − δ
+

y(1 + δ)
(1 − δ)2

> 0 (23)

since 0 < δ < 1.
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