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Abstract—Modern video players employ complex algorithms
to adapt the bitrate of the video that is shown to the user.
Bitrate adaptation requires a tradeoff between reducing the
probability that the video freezes and enhancing the quality of
the video shown to the user. A bitrate that is too high leads
to frequent video freezes (i.e., rebuffering), while a bitrate that
is too low leads to poor video quality. Video providers segment
the video into short chunks and encode each chunk at multiple
bitrates. The video player adaptively chooses the bitrate of each
chunk that is downloaded, possibly choosing different bitrates
for successive chunks. While bitrate adaptation holds the key to
a good quality of experience for the user, current video players
use ad-hoc algorithms that are poorly understood. We formulate
bitrate adaptation as a utility maximization problem and devise
an online control algorithm called BOLA that uses Lyapunov
optimization techniques to minimize rebuffering and maximize
video quality. We prove that BOLA achieves a time-average utility
that is within an additive term O(1/V) of the optimal value, for
a control parameter V related to the video buffer size. Further,
unlike prior work, our algorithm does not require any prediction
of available network bandwidth. We empirically validate our
algorithm in a simulated network environment using an extensive
collection of network traces. We show that our algorithm achieves
near-optimal utility and in many cases significantly higher utility
than current state-of-the-art algorithms. Our work has immediate
impact on real-world video players and BOLA is part of the
reference player implementation for the evolving DASH standard
for video transmission.

Index Terms—Internet Video, Video Quality, Adaptive Bitrate
Streaming, Lyapunov Optimization, Optimal Control

I. INTRODUCTION

Online videos are the “killer” application of the Internet
with videos currently accounting for more than half of the
Internet traffic. Video viewership is growing at a torrid pace
and videos are expected to account for more than 85% of all
Internet traffic within a few years [1]. As all forms of tradi-
tional media migrate to the Internet, video providers face the
daunting challenge of providing a good quality of experience
(QoE) for users watching their videos. Video providers are
diverse and include major media companies (e.g., NBC, CBS),
news outlets (e.g., CNN), sports organizations (e.g., NFL,
MLB), and video subscription services (e.g., Netflix, Hulu).
Recent research has shown that low-performing videos that
start slowly, play at lower bitrates, and freeze frequently can
cause viewers to abandon the videos or watch fewer minutes
of the videos, significantly decreasing the opportunity for gen-
erating revenue for the video providers [2]–[4], underscoring
the need for a high-quality user experience.
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Providing a high-quality experience for video users requires
balancing two contrasting requirements. The user would like
to watch the highest-quality version of the video possible,
where video quality can be quantified by the bitrate at which
the video is encoded. For instance, watching a movie in high
definition (HD) encoded at 2 Mbps arguably provides a better
user experience than watching the same movie in standard
definition (SD) encoded at a bitrate of 800 kbps. In fact,
there is empirical evidence that the user is more engaged
and watches longer when the video is presented at a higher
bitrate. However, it is not always possible for users to watch
videos at the highest encoded bitrate, since the bandwidth
available on the network connection between the video player
on the user’s device and the video server constrains what
bitrates can be watched. In fact, choosing a bitrate that is
higher than the available network bandwidth1 will lead to
video freezes in the middle of the playback, since the rate
at which the video is being played exceeds the rate at which
the video can be downloaded. Such video freezes are called
rebuffers and playing the video continuously without rebuffers
is a key factor in the QoE perceived by the user [3]. Thus,
balancing the contrasting requirements of playing videos at a
high bitrate while at the same time avoiding rebuffers is central
to providing a high-quality video watching experience.

A. Adaptive Bitrate (ABR) Streaming

Achieving a high QoE for video streaming is a major
challenge due to the sheer diversity of video-capable devices
that include smartphones, tablets, desktops, and televisions.
Further, the devices themselves can be connected to the
Internet in a multitude of ways, including cable, fiber, DSL,
WiFi and mobile wireless, each providing different bandwidth
characteristics. The need to adjust the video playback to the
characteristics of the device and the network has led to the
evolution of adaptive bitrate (ABR) streaming that is now the
de facto standard for delivering videos on the Internet.

ABR streaming requires that each video is partitioned into
chunks, where each chunk corresponds to a few seconds of
play. Each chunk is then encoded in a number of different
bitrates to accommodate a range of device types and network
connectivities. When the user plays a video, the video player
can download each chunk at a bitrate that is appropriate for
the available bandwidth of the network connection. Thus,
the player can switch to a chunk with a lower bitrate when

1Throughout this paper, we say bandwidth when talking about network
throughput and bitrate when talking about encoding quality.



the available bandwidth is low to avoid rebuffering. If more
bandwidth becomes available at a future time, the player can
switch back to a higher bitrate to provide a richer experience.
The video player has a buffer that allows it to fetch and
store chunks before they need to be rendered on the screen.
Thus, the video player can tolerate brief network disruptions
without interrupting the playback of the user by using the
buffered chunks. A large disruption, however, will empty
the buffer, resulting in rebuffering. The decision of which
chunks to download at what bitrates is made by a bitrate
adaptation algorithm within the video player, the design of
such algorithms being the primary focus of our work.

Several popular implementations of ABR streaming exist,
including Apple’s HTTP Live Streaming (HLS) [5], Mi-
crosoft’s Live Smooth Streaming (Smooth) [6] and Adobe’s
Adaptive Streaming (HDS) [7]. Each has its own proprietary
implementation and slight modifications to the basic ABR
technique described above. A key recent development is
a unifying open-source standard for ABR streaming called
MPEG-DASH [8]. DASH is broadly similar to the other ABR
protocols and is a particular focus in our empirical evaluation.

B. Our Contributions

Our primary contribution is a principled approach to the
design of bitrate adaptation algorithms for ABR streaming.
In particular, we formulate bitrate adaptation as a utility
maximization problem that incorporates both key components
of QoE: the average bitrate of the video experienced by the
user and the duration of the rebuffer events. An increase
in the average bitrate increases utility, whereas rebuffering
decreases it. A strength of our framework is that utility can be
defined in arbitrary ways, say, depending on the content, video
provider, or user device. This contrasts with bitrate adaptation
algorithms currently in use that provide no such flexibility.

Using Lyapunov optimization, we derive an online bitrate
adaptation algorithm called BOLA (Buffer Occupancy based
Lyapunov Algorithm) that provably achieves utility that is
within an additive factor of the maximum possible utility.
While numerous bitrate adaptation algorithms have been pro-
posed [9]–[12] and implemented within video players, our
algorithm is the first to provide a theoretical guarantee on
the achieved utility. Further, BOLA provides an explicit knob
for video providers to set the relative importance of a high
video quality in relation to the probability of rebuffering.

While not an explicit part of the Lyapunov optimization
framework, we also show how BOLA can be adapted to
avoid frequent bitrate switches during video playback. Bitrate
switches are arguably less annoying than rebuffering, but it
is still of some concern to video providers and users alike if
such switches occur too frequently.

Most algorithms implemented in practice use a bandwidth-
based approach where the available bandwidth between the
server and the video player is predicted and the predicted
value is used to determine the bitrate of the next chunk
that is to be downloaded. A complementary approach is a
buffer-based approach that does not predict the bandwidth,

but only uses the amount of data that is currently stored
in the buffer of the video player. Recently, there has been
empirical evidence that a buffer-based approach has desirable
properties that bandwidth-based approaches lack and has been
adopted by Netflix [11]. An intriguing outcome of our work
is that the optimal algorithm within our utility maximization
framework requires only knowledge of the amount of data in
the buffer and no estimate of the available bandwidth. Thus,
our work provides the first theoretical justification for why
buffer-based algorithms perform well in practice and adds new
insights to the ongoing debate [12] within the video streaming
and DASH standards communities of relative efficacy of the
two approaches. Further, since our algorithm BOLA is buffer-
based, it avoids the overheads of more complex bandwidth
prediction present in current video player implementations
and is more stable under bandwidth fluctuations. Note that
our results imply that the buffer level is a sufficient statistic
that indirectly provides all information about past bandwidth
variations required for choosing the next bitrate.

We also empirically evaluate BOLA on a wide set of
network traces that include 12 test cases provided by the
DASH industry forum [13] and 85 publicly-available 3G
mobile bandwidth traces [14]. As a benchmark for comparison,
we develop an optimal offline algorithm that uses dynamic
programming and is guaranteed to produce the maximum
achievable time-average utility for any given set of network
traces. Unlike BOLA that works in an online fashion, the
offline optimal algorithm makes decision based on perfect
knowledge of future bandwidth variations. Remarkably, the
utility achieved by BOLA is within 84–95% of offline optimal
utility for all the tested traces.

Besides comparing BOLA with the offline optimal, we also
empirically compared our algorithm with two state-of-the-art
algorithms proposed in the literature. In all test cases, BOLA
achieved a utility that is as good as or better than the best state-
of-the-art algorithm. In half of the tested scenarios, BOLA did
even better by achieving a utility that is nearly 1.75 times the
utility of the best state-of-the-art algorithm.

We also implemented BOLA as the default ABR algorithm
in dash.js, the DASH open-source reference player [15].

II. SYSTEM MODEL

Our system model closely captures how ABR streaming
works on the Internet today. We consider a video player
that downloads a video file from a server over the Internet
and plays it back to the user. The video file is segmented
into chunks that are downloaded in succession. The available
bandwidth between the server and the player varies over time.
This can be due to reasons such as network congestion and
wireless fading among others. The viewing experience of the
user is determined by both the video quality as quantified
by the bitrates of the chunks that are played back and the
playback characteristics such as rebuffering. The objective
of the player is to maximize a utility associated with the
user’s viewing experience while adapting to time-varying (and
possibly unpredictable) changes in the available bandwidth.



Video Model: The video file is segmented into N chunks
indexed as {1, 2, . . . , N} where each chunk represents p
seconds of the video. On the server, each chunk is available in
M different bitrates where a chunk encoded at a higher bitrate
has a larger size in bits and its playback provides a better user
experience and higher utility. Suppose the size (in bits) of a
chunk encoded at bitrate index m is Sm bits2 and suppose
the utility derived by the user from viewing it is given by υm
where m ∈ {1, 2, . . . ,M}. WLOG, let the chunk bitrates be
non-increasing in index m. Then, the following holds.

υ1 ≥ υ2 ≥ . . . ≥ υM ⇐⇒ S1 ≥ S2 ≥ . . . ≥ SM . (1)

Note that the actual encoding bitrate for bitrate index m is
given by Sm/p bits/second.

Video Player: The video player downloads successive
chunks of the video file from the server and plays back
the downloaded chunks to the user. Each chunk must be
downloaded in its entirety before it can be played back. We
assume that the player sends requests to the server to download
one chunk at a time. Also, the chunks are downloaded in the
same order as they are played back. The video player has a
finite buffer of size Qmax chunks3 to store the downloaded
but yet-to-be-played-back chunks. Measuring the buffer in
chunks is equivalent to measuring it in seconds since the chunk
duration p is fixed. If the buffer is full the player cannot
download any new chunks and waits for a fixed period of
time given by ∆ seconds before attempting to download a
new chunk. The chunks that are fully downloaded are played
back at a fixed rate of 1/p chunks/second without any idling.

When sending a download request for a new chunk, the
player also specifies the desired bitrate for that chunk. This
enables the player to tradeoff the overall video quality with
the likelihood of rebuffering that occurs when there are no
chunks in the buffer for playback. Note that while each chunk
has a fixed playback time of p seconds, the size of the chunk
(in bits) can be different depending on its bitrate. Thus, the
choice of bitrate for a chunk impacts its download time.

Network Model: The available bandwidth (in bits/second)
between the server and player is assumed to vary continuously
in time according to a stationary random process ω(t). We
do not make any assumptions about knowing the statistical
properties or probability distribution of ω(t) except that it has
finite first and second moments as well as a finite inverse
second moment. Suppose the player starts to download a chunk
of bitrate index m at time t. Then the time t′ when the
download finishes satisfies the following:

Sm =

∫ t′

t

ω(τ)dτ (2)

Let E {ω(t)} = ωavg. Then, E {t′ − t} = Sm/ωavg.

2For simplicity, we assume that the chunk size (in bits) is Sm for all chunks
of a given bitrate index m. However, our framework can be easily extended
to the case where the chunk size for the same bitrate can vary across chunks.

3It is common practice for video players to measure the buffer in seconds
of playback time rather than in bits.

III. PROBLEM FORMULATION

We consider two primary performance metrics4 that affect
the overall QoE of the user: (1) time-average playback quality
which is a function of the bitrates of the chunks viewed by
the user and (2) fraction of time spent not rebuffering. To
formalize these metrics, we consider a time-slotted represen-
tation of our system model. The timeline is divided into non-
overlapping consecutive slots of variable length and indexed
by k ∈ {1, 2, . . .}. Slot k starts at time tk and is Tk = tk+1−tk
seconds long. We assume that t1 = 0. At the beginning of each
slot, the video player makes a control decision on whether it
should start downloading a new chunk, and if yes, its bitrate.
If a download decision is made, then a request is sent to the
server and the download starts immediately5. This download
takes Tk seconds and is completed at the end of slot k. Note
that Tk is a random variable whose actual value depends on
the realization of the ω(t) process as well as the choice of
chunk bitrate. If the player decides not to download a new
chunk in slot k (for example, when the buffer is full), then
this slot lasts for a fixed duration of ∆ seconds.

We define the following indicator variable for each slot k:

am(tk) =

 1 if the player downloads a chunk
of bitrate index m in slot k, and

0 otherwise.
(3)

Then, for all k, we must have
∑M
m=1 am(tk) ≤ 1. Moreover,

when
∑M
m=1 am(tk) = 0, then no chunks are downloaded.

Let KN denote the index of the slot in which the N th (i.e.,
last) chunk is downloaded. Also, denote the time at which
the player finishes playing back the last chunk by Tend. Then
the first performance metric of interest is the time-average
expected playback utility υN which is defined as

υN
M
=

E
{∑KN

k=1

∑M
m=1 am(tk)υm

}
E {Tend}

(4)

where the numerator denotes the expected total utility across
all N chunks. Note that a chunk can only be played back after
it has been downloaded entirely. Thus, Tend is greater than the
last chunk’s download finish time, i.e., Tend > tKN

+ TKN
.

The second performance metric of interest is the expected
fraction of time sN that is spent not rebuffering and can be
interpreted as a measure of the average playback “smooth-
ness”. This can be calculated by observing that the actual
playback time for all N chunks is Np seconds. Thus, the
expected playback smoothness sN is given by

sN
M
=

Np

E {Tend}
=

E
{∑KN

k=1

∑M
m=1 am(tk)p

}
E {Tend}

(5)

where in the last step we use the relation that Np =∑KN

k=1

∑M
m=1 am(tk)p. Note that Tend ≥ Np (since at most

4We do not include the secondary objective of avoiding frequent bitrate
switches in our formulation, but we deal with it empirically in Section V-E.

5Any delays associated with sending the request can be added to the overall
download time.



one chunk can be played back at any time), so that sN ≤ 1.
Performance Objective: We want to design a control algo-

rithm that maximizes the joint utility υN +γsN subject to the
constraints of the model. γ > 0 is an input weight parameter
for prioritizing playback utility with the playback smoothness.

This problem can be formulated as a stochastic optimization
problem with a time-average objective over a finite horizon
and dynamic programming (DP) based approaches can be used
to solve it [16]. However, traditional DP-based methods have
two major disadvantages. First, they require knowledge of the
distribution of the ω(t) process which may be hard to obtain.
Second, even when such knowledge is available, the resulting
DP can have a very large state space. This is because the
state space for this problem under a DP formulation would
consist of not only the timeslot index k and value tk, but also
the buffer occupancy and the quality types of the chunks in
the buffer. Further, an appropriate discretization of the ω(t)
process would be required to obtain a tractable solution.

A. Problem Relaxation

In order to overcome the above mentioned challenges
associated with traditional DP based methods, we take the
following approach. We consider this problem in the limiting
regime when the video size becomes large, i.e., N → ∞.
In this regime, we can get the following two simplifications.
First, the optimal control policy becomes independent of the
slot index k. That is, it is sufficient to consider the class of
stationary (and potentially randomized) algorithms that make
control decisions only as a function of the buffer occupancy.
Second, instead of considering the total playback finish time
Tend, we can consider total download finish time in the
objective. Specifically, in the limit N → ∞, the metrics υN
and sN can be expressed as

υ M
= lim
N→∞

υN =
lim
N→∞

E
{

1
KN

∑KN

k=1

∑M
m=1 am(tk)υm

}
lim
N→∞

E
{

1
KN

∑KN

k=1 Tk

} (6)

s M
= lim
N→∞

sN =
lim
N→∞

E
{

1
KN

∑KN

k=1

∑M
m=1 am(tk)p

}
lim
N→∞

E
{

1
KN

∑KN

k=1 Tk

} (7)

This follows by noting that the difference between the ex-
pected total playback finish time E {Tend} and the expected
total download finish time E

{∑KN

k=1 Tk

}
is upper bounded by

a finite value due to the finite buffer size Qmax. Specifically,
this upper bound is given by Qmaxp.

Let us denote the optimal time-average values of these
metrics in the large N regime under an optimal policy by
υ∗ and s∗ respectively. Note that while the optimal policy
in the large N regime does not depend on the slot index, it
can still depend on the buffer occupancy state. To address
this, we temporarily replace the finite buffer constraint of our
model with a rate stability constraint [17]. This constraint only
requires that the time-average arrival rate into the buffer is
equal to the time-average playback rate. It is clear that optimal
time-average values of the metrics under this relaxation cannot

be smaller than υ∗ and s∗ respectively since the optimal policy
for the finite buffer constrained model is rate stable. Moreover,
the following can be shown under this relaxation.

Lemma 1: In the large N regime, there exists a buffer-
state-independent stationary policy that makes i.i.d. control
decisions in every slot and satisfies the rate stability constraint
while achieving time-average utility no smaller than υ∗+γs∗.

Proof: This follows from Theorem 4.5 in [17] and is
omitted for brevity.
Note that such a buffer-state-independent stationary policy
is not necessarily feasible for our finite buffer system. Fur-
ther, calculating it explicitly would require knowledge of
the distribution of ω(t). However, instead of calculating this
policy explicitly, we will use its existence and characterization
per Lemma 1 to design an online control algorithm using
Lyapunov optimization [17]. We will show that this online
algorithm is feasible for our finite buffer system and achieves
a time-average utility that is within O(1/Qmax) of υ∗ + γs∗

without requiring any knowledge of the distribution of ω(t).

IV. BOLA: AN ONLINE CONTROL ALGORITHM

Our online control algorithm for bitrate adaptation makes
use of the current buffer level (measured in number of chunks)
that we denote by Q(tk). This is updated at the start of each
slot using the following equation:

Q(tk+1) = max[Q(tk)− Tk/p, 0] +
∑M
m=1 am(tk) (8)

Here, the arrival value into this queue in slot k is given by∑M
m=1 am(tk) which is 1 if a download decision is made in

slot k and 0 otherwise. The departure value is Tk/p which
represents the total number of chunks (including fractional
chunks) that could have departed the buffer in slot k. Note
that the actual value of Tk is revealed at the end of slot k. We
assume that the buffer level is initialized to 0, i.e., Q(t1) = 0.

The Lyapunov optimization-over-renewal-frames method
[17] can be used to derive an algorithm that optimizes the
metrics in (6)–(8). The method greedily minimizes the ratio of
drift plus penalty to frame length over each slot. We now give
a high-level intuition of how to derive the algorithm. In slot
k, the buffer is kept stable by minimizing the drift defined as
E
{

(Q(tk+1)2 −Q(tk)2)/2 | Q(tk)
}

. Using (8), we achieve
buffer stability by minimizing Q(tk)(

∑M
m=1 am − Tk/p). Us-

ing (6)–(7), the performance objective to maximize υ + γs
is achieved by maximizing (

∑M
m=1 am(tk)(υm + γp)).

The expected frame (slot) length has a linear relation to∑M
m=1 am(tk)Sm. We use a control parameter V > 0 related

to the maximum buffer size to allow a tradeoff between the
buffer size and the distance from the optimal utility.

In every slot k, given the buffer level Q(tk) at the start of
the slot, our algorithm makes a control decision by solving
the following deterministic optimization problem:

Maximize
∑M
m=1 am(tk)

(
V υm + V γp−Q(tk)

)∑M
m=1 am(tk)Sm

subject to
∑M
m=1 am(tk) ≤ 1, am(tk) ∈ {0, 1} (9)



The constraints of this problem result in a very simple solution
structure. Specifically, the optimal solution is given by:

1) If Q(tk) > V (υm + γp) for all m ∈ {1, 2, . . . ,M}, then
the no-download option is chosen, i.e., am(tk) = 0 for
all m. Note that in this case Tk = ∆.

2) Else, the optimal solution is to download the next chunk
at bitrate index m∗ where m∗ is the index that maximizes
the ratio

(
V υm + V γp − Q(tk)

)
/Sm among all m for

which this ratio is positive.
Notice that solving this problem does not require any

knowledge of the ω(t) process. Further, the optimal solution
depends only on the buffer level Q(tk). That’s why we call
our algorithm BOLA: Buffer Occupancy based Lyapunov Algo-
rithm. These properties of BOLA should be contrasted with the
bandwidth prediction based strategies that have been recently
proposed for this problem that require explicit prediction of
the available bandwidth for control decisions.

The following theorem characterizes the theoretical perfor-
mance guarantees provided by BOLA.

Theorem 2: Suppose BOLA as defined by (9) is imple-
mented in every slot using a control parameter 0 < V ≤
Qmax−1
υ1+γp

. Assume Q(0) = 0. Then, the following hold.
1) The queue backlog satisfies Q(tk) ≤ V (υ1 + γp) + 1 for

all slots k. Further, the buffer occupancy in chunks never
exceeds Qmax.

2) The time-average utility achieved by BOLA satisfies

υBOLA + γsBOLA ≥ υ∗ + γs∗ − p2 + Ψ

2p2V
(10)

where Ψ is an upper bound on E
{
T 2
k

}
under any control

algorithm and is assumed to be finite.
Proof: The proof is based on the technique of Lyapunov

optimization over renewal frames (Chapter 7 of [17]) and is
subject to Lemma 1. It is omitted for brevity but is included
in the extended version of this paper [18].
Remarks: The performance bounds in Theorem 2 show a
O(1/V, V ) utility and backlog tradeoff that is typical of
Lyapunov based control algorithms for similar utility max-
imization problems. Specifically, the time-average utility of
BOLA is within an O(1/V ) additive term of the optimal utility
and this gap may be made smaller by choosing a larger value
of V . However, the largest feasible value of V is constrained
by the buffer size and there is a linear relation between them.

A. Understanding BOLA With an Example
We now present a sample run to illustrate how BOLA

works. We slice a 99-second video using 3-second chunks
and encode it at five different bitrates. While BOLA only
requires the utilities to be a non-decreasing function of the
chunk bitrate, it is natural to consider concave utility functions
with diminishing returns, e.g., a 1 Mbps increase in chunk
bitrate likely provides a larger utility gain for the user when
that increase is from 0.5 Mbps to 1.5 Mbps than when it is
from 5 Mbps to 6 Mbps. A natural choice for our example is
the logarithmic utility function: let υm = ln(Sm/SM ). Pick
γ = 5.0/p and V = 0.93. The bitrates and utilities are below.
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Fig. 1. (a) The value of (V υm+V γp−Q)/Sm for different bitrates depends
on the buffer level. (b) BOLA’s bitrate choice as a function of the buffer level.
(γp = 5 and V = 0.93.) Note that the buffer level is Qp seconds.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

(a
) 

 b
it

ra
te

 (
M

b
p
s)

download bitrate
network bandwidth

encoded bitrates

 0

 5

10

15

20

25

 0 20 40 60 80 100

(b
) 

 b
u
ff

e
r 

le
v
e
l 
(s

)

time (s)

buffer level
decision thresholds

Fig. 2. Sample video download and playback using BOLA. (a) The video is
encoded at 5 different bitrates. The network bandwidth varies from high to
low and back to high. The downloaded chunk bitrate adapts to the network
bandwidth. (b) The buffer level variation triggers bitrate changes when it
crosses the thresholds.

bitrate (Mbps) 6.000 2.962 1.427 0.688 0.331
S (Mb) 18.00 8.886 4.281 2.064 0.993
υ 2.897 2.192 1.461 0.732 0.000

For any slot we choose the chunk bitrate to maximize
(V υm + V γp − Q)/Sm for 1 ≤ m ≤ M . Fig. 1(a) shows
the relationship between the expression and the buffer level Q
for different m. The line intersections mark the buffer levels
that correspond to decision thresholds. Fig. 1(b) summarizes
BOLA’s bitrate choices as a function of the buffer level.

Fig. 2 shows how BOLA works. We use a synthetic network
bandwidth profile as shown in Fig. 2(a). We can see the
feedback loop involving the bitrate in (a) and the buffer level
in (b). BOLA chooses the bitrate based directly on the buffer
level using Fig. 1(b). The bitrate affects the download time,
thus it indirectly affects the buffer level at the beginning of the
following slot. Finally, when all the chunks are downloaded,
the video player plays out the chunks remaining in the buffer.

B. Choosing Utility and Parameters γ and V

While we chose a logarithmic utility function for the exam-
ple, a video provider can use any utility function satisfying (1).



The utility function might also take into account system
characteristics such as the type of device a viewer is using.
γ corresponds to how strongly we want to avoid rebuffering.

Increasing γ translates the graphs in Fig. 1 to the right,
effectively shifting the thresholds higher without changing
their relative distance. BOLA will thus download more low-
bitrate chunks to maintain a larger (and safer) buffer level.

Increasing V expands the graphs in Fig. 1 horizontally about
the origin. If we have a maximum buffer level Qmax we want
to avoid downloading unless there is enough space for one full
chunk on the buffer, that is unless Q ≤ Qmax−1. For a given
Qmax we can set V = (Qmax − 1)/(υ1 + γp).

After choosing a utility function, a video provider might
want to specify a safe buffer level such that BOLA will always
choose the lowest bitrate when the buffer falls below the level.
γ and V can be calculated to satisfy the safe buffer level
constraint and a maximum buffer level constraint.

V. IMPLEMENTATION AND EMPIRICAL EVALUATION

We first implemented a basic version of BOLA, named
BOLA-BASIC, directly from (9). Recall that when the buffer
level is full BOLA does not download a chunk but waits for
∆ seconds. Rather than picking an arbitrary value for ∆,
we use a dynamic wait until Q(tk) ≤ V (υ1 + γp). This
has the same effect as picking a fixed but very small ∆,
so the theoretical analysis still holds. We also implemented
other versions of BOLA, namely BOLA-FINITE, BOLA-O,
and BOLA-U, that we describe later in this section.

A. Test Methodology

We simulated all versions of BOLA using the Big Buck
Bunny movie [19]. The 10-minute movie was encoded at 10
different bitrates and sliced in 3-second chunks. Although each
quality index has a specified average bitrate, chunks may have
variable bitrate (VBR) because of the varying nature of the
movie. We simulate playback times longer than 10 minutes
by repeating the movie. Again we choose a logarithmic utility
function: υm = ln(Sm/SM ). Table I shows the mean and
standard deviation of the bitrate and chunk size for each
quality index and the respective utility values.

The DASH Industry Forum provides benchmarks for various
aspects of the DASH standard [13]. The benchmarks include
twelve different network profiles. Profiles 1–6 have network
bandwidths ranging from 1.5 to 5 Mbps while profiles 7–12
have bandwidths ranging from 1 to 9 Mbps. Different latencies
are provided for each bandwidth, where the latency is half
the round-trip time (RTT). Table II shows the odd-numbered
bandwidth characteristics. Profile 1 spends 30s at each of 5,
4, 3, 2, 1.5, 2, 3 and 4 Mbps respectively, then starts back at
the top. Even-numbered profiles are similar to the preceding
odd-numbered profiles but start at the low bandwidth stage.
For example, profile 2 starts at 1.5 Mbps.

In addition, we also tested our algorithms using a set of 86
3G mobile bandwidth traces that are publicly available [14].
One trace was excluded because it had an average bandwidth
of 80 kbps; our lowest video bitrate is 230 kbps. Since the

TABLE I
BITRATES USED FOR BIG BUCK BUNNY TEST VIDEO

Bitrate Bitrate (Mbps) Chunk Size S (Mb) Utility
Index Mean Standard Mean Standard υ
m Deviation Deviation = ln(S/SM )

1 6.000 1.078 18.00 3.232 3.261
2 5.027 0.891 15.08 2.673 3.084
3 2.962 0.564 8.886 1.691 2.556
4 2.056 0.394 6.168 1.182 2.190
5 1.427 0.275 4.281 0.825 1.825
6 0.991 0.182 2.973 0.545 1.461
7 0.688 0.120 2.064 0.360 1.096
8 0.477 0.096 1.431 0.287 0.729
9 0.331 0.054 0.993 0.162 0.364

M = 10 0.230 0.038 0.690 0.113 0.000

TABLE II
NETWORK PROFILES FOR THE DASH BENCHMARKS

1 3 5 7 9 11
Mbps (ms) Mbps (ms) Mbps (ms) Mbps (ms) Mbps (ms) Mbps (ms)
5.0 ( 38) 5.0 ( 13) 5.0 (11)
4.0 ( 50) 4.0 ( 18) 4.0 (13) 9.0 ( 25) 9.0 ( 10) 9.0 ( 6)
3.0 ( 75) 3.0 ( 28) 3.0 (15) 4.0 ( 50) 4.0 ( 50) 4.0 (13)
2.0 ( 88) 2.0 ( 58) 2.0 (20) 2.0 ( 75) 2.0 (150) 2.0 (20)
1.5 (100) 1.5 (200) 1.5 (25) 1.0 (100) 1.0 (200) 1.0 (25)
2.0 ( 88) 2.0 ( 58) 2.0 (20) 2.0 ( 75) 2.0 (150) 2.0 (20)
3.0 ( 75) 3.0 ( 28) 3.0 (15) 4.0 ( 50) 4.0 ( 50) 4.0 (13)
4.0 ( 50) 4.0 ( 18) 4.0 (13)

traces do not include latency measurements, we used 50 ms
latency giving a RTT of 100 ms throughout. This is the median
RTT measured empirically in [20].

B. Computing an Upper Bound on the Maximum Utility

In order to evaluate how well BOLA performs on the traces,
it is important to derive an upper bound on the maximum
utility that is obtainable by any algorithm on a given trace. We
derive an offline optimal algorithm that provides the maximum
achievable utility using dynamic programming. We define a
table r(n, t, b) that contains the maximum utility possible
when we download the nth chunk and finish at time t with
buffer level b. We initialize the table with r(0, 0, 0) = 0. Let
x(n, t,m) be the time to download the nth chunk at bitrate
index m starting at time t. Note that the dependency of x on
n is due to VBR. We quantize the time with granularity δ.
While some accuracy is lost, we ensure the final result will
still be an upper bound by rounding the download time down.

xδ(n, t,m) = bx(n, t,m)/δc · δ
We cap the buffer level at bmax.

x′δ(n, t, b,m) = max[xδ(n, t,m), b+ p− bmax]
Let y(n, t, b,m) be the rebuffering time.

y(n, t, b,m) = max[x′δ(n, t, b,m)− b, 0]
We generate entries for r(n, ·, ·) from r(n− 1, ·, ·) using

r(n, t, b) = max
m,t′,b′

(
r(n− 1, t′, b′) + υm − γy(n, t′, b′,m)

)
such that t = t′ + x′δ(n, t

′, b′,m) and
b = b′ − x′δ(n, t′, b′,m) + y(n, t′, b′,m).

C. Evaluating BOLA-BASIC

Fig. 3(a) shows the time-average utility of BOLA-BASIC
when the video length is 10, 30 and 120 minutes. We set
γp = 5 and varied V for different buffer sizes. We compared
the utility of BOLA-BASIC with the offline optimal bound
described in Section V-B. The offline optimal gave nearly the
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Fig. 3. Time-average utility for γp = 5 using profile 1 for (a) BOLA-BASIC
and (b) BOLA-FINITE and BOLA-U.

1: for n in [1, N ] do
2: t← min[playtime from begin, playtime to end]
3: t′ ← max[t/2, 3p]
4: QD

max ← min[Qmax, t′/p]
5: V D ← (QD

max − 1)/(υ1 + γp)
6: m∗[n]← argmaxm(V Dυm + V Dγp−Q)/Sm

7: if m∗[n] < m∗[n− 1] then
8: r ← bandwidth measured when downloading chunk (n− 1)
9: m′ ← minm such that Sm/p ≤ max[r, SM/p]

10: if m′ ≤ m∗[n] then
11: m′ ← m∗[n]
12: else if m′ > m∗[n− 1] then
13: m′ ← m∗[n− 1]
14: else if some utility sacrificed for fewer oscillations then

15: pause until (V Dυm′ + V Dγp−Q)/Sm′ ≥
(V Dυm′−1 + V Dγp−Q)/Sm′−1

. BOLA-O

16: else
17: m′ ← m′ − 1 . BOLA-U
18: end if
19: m∗[n]← m′

20: end if
21: pause for max[p · (Q−QD

max + 1), 0]
22: download chunk n at bitrate index m∗[n], possibly abandoning
23: end for

Fig. 4. The BOLA Algorithm.

same utility for the different video lengths. BOLA-BASIC only
obtains about 80% of the offline optimal bound. Also, the
utility of BOLA-BASIC decreases slightly when the buffer
size is increased because it must download more lower-
bitrate chunks during startup before it can reach the buffer
levels required to switch to higher-bitrate chunks. Our results
suggests that there is room to improve BOLA-BASIC that
motivates our next version.

D. Adapting BOLA to Finite-Sized Videos

BOLA-BASIC was derived under the assumption that the
videos are infinite. Thus, some adaptations are needed for
BOLA to work effectively with smaller videos. Motivated
by our initial experiments, we implemeted two adaptations to
BOLA-BASIC to derive a version we call BOLA-FINITE.

1) Dynamic V value for startup and wind down: A large
buffer allows BOLA-BASIC to perform better but it has two
drawbacks. First, it takes longer to prime a large buffer during
startup. Lower bitrate chunks are preferred until the buffer
level reaches steady state. Second, at some late stage all
downloads are complete and any remaining buffered video is
played out. Any available bandwidth during this period is not
utilized. Shortening this period would result in less unutilized
available bandwidth. We mitigate these effects by introducing

a dynamic V D which corresponds to a dynamic buffer size
QD

max, shown in lines 2–5 in Fig. 4. BOLA-FINITE does not
try to fill the whole buffer too soon and does not try to maintain
a full buffer too long. We still need a minimum buffer size 3p
for the algorithm to work effectively.

2) Download abandonment: BOLA-BASIC takes control
decisions just before the download of each chunk. Consider a
scenario where the player is downloading high-bitrate 6 Mbps
chunks in good network conditions. The network bandwidth
suddenly drops to 1 Mbps as the player has just started a
new chunk download. The chunk will take 6p seconds to
download, depleting the buffer and possibly causing rebuffer-
ing. BOLA-FINITE mitigates this problem by monitoring
download progress and possibly abandoning a download. If a
chunk at bitrate index m is being downloaded, the remaining
size SR

m is less than Sm. The chunk can be abandoned and
downloaded at some bitrate index m′ subject to m < m′ ≤M
when (V Dυm+V Dγp−Q)/SR

m < (V Dυm′+V Dγp−Q)/Sm′ .
The control idea remains the same, but the current bitrate
m has a smaller corresponding size SR

m because part of
the chunk has already been downloaded. Fig. 2 illustrates a
scenario where abandonment might help. At 46s a 3 Mbps
chunk download starts. Since there is a bandwidth drop at
the time, the chunk takes almost 9s to download. The buffer
is depleted and BOLA-BASIC switches to downloading at a
bitrate of 0.3 Mbps. BOLA-FINITE with abandonment logic
would have detected the rapidly depleting buffer and stopped
the long download, with the system only dropping to the 1.4
and 0.7 Mbps download bitrates in the low-bandwidth period.

Fig. 3(b) shows the time-average utility of BOLA-FINITE
for 10, 30 and 120 minutes of playback time with γp = 5.
Comparing with BOLA-BASIC in Fig. 3(a), we see that the
time-average utility of BOLA-FINITE is much closer to the
offline optimal bound. The benefit of the adjustments is also
evident as the buffer grows larger, as there is no significant
decrease in utility caused by filling the buffer with low-bitrate
chunks in the earlier stages of the video.

E. Avoiding Bitrate Oscillations

While our performance objective optimizes playback utility
and playback smoothness, users are also sensitive to excessive
bitrate switching. We discuss three causes of bitrate switches.

1) Bandwidth variation: As the network conditions change,
the player varies the bitrate, tracking the network bandwidth.
Such switches are acceptable; the player has no control on the
bandwidth and should adapt to different network conditions.

2) Dense buffer thresholds: Either a larger number of bitrate
levels and/or a smaller buffer size may push the threshold
levels closer. If the differences between threshold levels are
less than the chunk duration p, adding one downloaded chunk
to the buffer may push the buffer level over several threshold
levels at once. This might cause BOLA-FINITE to overshoot
and choose a bitrate that is too high for the available band-
width. Consequently, the chunk download would take much
more than p seconds, leading to excessive buffer depletion,
causing BOLA-FINITE to switch down its bitrate by more
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Fig. 5. The time-average utility of BOLA-O and BOLA-U with γp = 5 and a 25-second buffer playing a 30-minute video for the DASH test network profiles
1–12 and mobile traces (3G). BOLA utility is within 84–95% of offline optimal utility. Compared with ELASTIC and PANDA, BOLA has about 1.75 times
the utility of the other algorithms in roughly half the cases.

than one level. In such a scenario BOLA-FINITE can oscillate
between bitrates, even when the available bandwidth is stable.

3) Bitrate quantization: Having a stable network bandwidth
and widely-spaced thresholds still does not avoid all bitrate
switching. Suppose the bandwidth is 2.0 Mbps and it lies
between two encoded bitrates of 1.5 and 3.0 Mbps. While
the player downloads 1.5 Mbps chunks, the buffer keeps
growing. When the buffer crosses the threshold the player
switches to 3.0 Mbps, depleting the buffer. After the buffer gets
sufficiently depleted, the player switches back to 1.5 Mbps,
and the cycle repeats. In this example, a viewer might prefer
the video player to stick to the 1.5 Mbps bitrate, sacrificing
some utility in order to have fewer oscillations. Or, a viewer
might want to maximize utility and play a part of the video in
the higher bitrate of 3.0 Mbps at the cost of more oscillations.
We describe two variants of BOLA below to suit either viewer.

The first variant that we call BOLA-O mitigates oscillations
by introducing bitrate capping (lines 7–20 in Fig. 4) when
switching to a higher bitrate. BOLA-O verifies that the higher
bitrate is sustainable by comparing it to the bandwidth as
measured when downloading the previous chunk (lines 8–11).
Since the motive is to limit oscillations rather than to predict
future bandwidth, this adaptation does not drop the bitrate to
a lower level than in the previous download (lines 12–13).
Continuous downloading at a bitrate lower than the bandwidth
would cause the buffer to keep growing. BOLA-O avoids this
by allowing the buffer to slip to the appropriate threshold
before starting the download (line 15).

The second variant that we call BOLA-U does not sacrifice
utility. Excessive buffer growth is avoided by allowing the
bitrate to be one level higher than the sustainable bandwidth
(line 17). This allows the player to choose 3 Mbps in the
example. While BOLA-U does not handle the third type of
oscillations, it handles the more severe second type.

Looking back at Fig. 3(b) we see that the added stability of
BOLA-U pays off when using a small buffer size and BOLA-U
achieves a larger utility than BOLA-FINITE. Fig. 5 shows the
time-average utility of BOLA-O and BOLA-U with γp = 5
and Qmaxp = 25s playing a 30-minute video. The utility lost
by BOLA-O to avoid oscillations is clearly evident. In practice
the lost utility is limited by the distance between encoded
bitrates; if the next lower bitrate level is not far from the
network bandwidth, then little utility will be lost.
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Fig. 6. (a) The average bitrate change between adjacent chunks was smaller
for BOLA-O than for BOLA-U, but some bitrate change is needed to
accurately track the network bandwidth. (b) Comparing BOLA with ELASTIC
and PANDA using the average bitrate raw metric; ELASTIC downloads at a
bitrate higher than the available bandwidth for profile 7, leading to rebuffering.
Average bitrate change and average bitrate are similar to profile 1 for profiles
2–6 and are similar to profile 7 for profiles 8–12 [18].

We measure oscillations by comparing consecutive chunks.
The change in bitrate between a chunk and the next is the
absolute difference between bitrates (in Mbps) of the two
chunks. Fig. 6(a) shows the bitrate change averaged across all
the chunks. While BOLA-U has a high average bitrate change
because of the quantization, BOLA-O only switches bitrate
because of network bandwidth variations.

F. Comparison With State-of-the-Art Algorithms

We now compare BOLA with two state-of-the art algo-
rithms, ELASTIC [9] and PANDA [10]. We use the default
design parameters in [9] and [10]. We test both BOLA-O and
BOLA-U. Although BOLA performs better with larger buffers,
we limited the buffer size to 25s for the tests to ensure fairness.
ELASTIC targets a buffer level of 15s but the buffer level
varies higher. PANDA targets a minimum buffer level of 26s.

Fig. 5 compares the algorithms. BOLA-U consistently
performs significantly better than PANDA. While BOLA-U
and ELASTIC perform similarly for profiles 1–6, BOLA-U
performs significantly better for the other profiles that have
larger bandwidth variations. BOLA-O always performs within
a small margin of BOLA-U.

Since ELASTIC and PANDA were not designed for the
utility score we repeat the comparison using the average bitrate
and rebuffering metrics in Fig. 6(b). For profiles 1–6, BOLA-U
has approximately the same bitrate as ELASTIC. ELASTIC
has a higher bitrate for profiles 7–12, but that comes at a



significant cost in terms of rebuffering. For these profiles, the
ratio of the rebuffering time to the play time is more than
20% for ELASTIC, while BOLA-U has no rebuffering. For
the 3G traces, ELASTIC has marginally higher bitrate than
BOLA-U but has a 12.0% rebuffer-to-play ratio compared
with BOLA-U’s 3.5%. ELASTIC rebuffers significantly more
because it does not react in time when the bandwidth drops.

Comparing BOLA-U with PANDA, both do not rebuffer for
profiles 1–12. For the 3G traces, BOLA-U and PANDA have a
rebuffer-to-play ratio of 3.5% and 2.6% respectively. However,
PANDA has significantly lower bitrate than BOLA-U. The
reason is that PANDA is more conservative and in some cases
does not change to a higher bitrate even if it is sustainable.

In Fig. 6(a) we show our results for our secondary metric
of bitrate oscillations. BOLA-U does not perform well in this
metric, since it attempts to maximize utility at the cost of
increased oscillations. Comparing BOLA-O with ELASTIC
and PANDA, ELASTIC has a lower average change than
BOLA-O only in the cases where it has a slow reaction and
excessive rebuffering. PANDA has a lower average change
because it is more conservative and in some cases does not
change to a higher bitrate even if that bitrate is sustainable.

Thus, from our empirical analysis, we can conclude that
BOLA achieves higher utility, and performs more consistently
across different scenarios in comparison with ELASTIC and
PANDA. One reason for the consistency of BOLA is that
it does not have a large number of parameters. BOLA has
two design parameters γ and V , which have an intuitive
significance as discussed in Section IV-B, and an option of
whether or not to trade off some utility to reduce oscillations.
Other algorithms have a number of different parameters and
tuning the parameters for a particular scenario might make the
system less suited for other scenarios.

VI. RELATED WORK

There has been a lot of recent work on bitrate adapta-
tion algorithms, much of which is based on estimating the
bandwidth of the network connection. Notable among this is
ELASTIC [9] that uses control theory to adjust the bitrate so
as to keep the buffer occupancy at a constant level. Another
notable algorithm is PANDA [10] which also estimates the
network bandwidth. PANDA drops the download bitrate as
soon as low bandwidth is detected but only increases the bitrate
slowly to probe the real capacity when a higher bandwidth is
detected. In [12], an algorithm using model predictive control
(MPC) is proposed to optimize a comprehensive set of metrics.
In this approach, the bitrate for the current chunk is chosen
based on a network bandwidth prediction for the next few
chunks. But, its performance depends on the accuracy of such
a prediction. The approach also requires significant offline
optimization to be performed outside of the client for an
exhaustive set of scenarios. In [11], a buffer-based algorithm
is proposed, but assumes that the buffer size is large (in the
order of minutes), thereby making it not suitable for short
videos. Further, it does not provide any theoretical guarantees
for its buffer-based approach. Unlike prior work, we derive

a buffer-based algorithm with theoretical guarantees that is
simple to implement within the client and we empirically show
its efficacy on extensive network traces.

VII. CONCLUSION

We formulated video bitrate adaptation for ABR streaming
as a utility maximization problem and derived BOLA, an
online control algorithm that is provably near-optimal. Further,
we empirically demonstrated the efficacy of BOLA using
extensive traces. In particular, we showed that our online al-
gorithm achieves utility close to the optimal offline algorithm.
We also showed that our algorithm significantly outperformed
two well-known algorithms in nearly half the test scenarios.
We also implemented BOLA as the default ABR algorithm in
dash.js, the open-source DASH reference player [15].
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