
John Dilley, Bruce Maggs,
Jay Parikh, Harald Prokop,
Ramesh Sitaraman,
and Bill Weihl
Akamai Technologies

Globally Distributed
Content Delivery

Using more than 12,000 servers in over 1,000 networks,

Akamai’s distributed content delivery system fights service

bottlenecks and shutdowns by delivering content from the

Internet’s edge.

As Web sites become popular,
they’re increasingly vulnerable to
the flash crowd problem, in which

request load overwhelms some aspect of
the site’s infrastructure, such as the front-
end Web server, network equipment, or
bandwidth, or (in more advanced sites) the
back-end transaction-processing infra-
structure. The resulting overload can crash
a site or cause unusually high response
times — both of which can translate into
lost revenue or negative customer atti-
tudes toward a product or brand.

Our company, Akamai Technologies,
evolved out of an MIT research effort
aimed at solving the flash crowd problem
(www.akamai.com/en/html/about/histo-
ry.html). Our approach is based on the
observation that serving Web content
from a single location can present serious
problems for site scalability, reliability,
and performance. We thus devised a sys-
tem to serve requests from a variable
number of surrogate origin servers at the

network edge.1 By caching content at the
Internet’s edge, we reduce demand on the
site’s infrastructure and provide faster
service for users, whose content comes
from nearby servers.

When we launched the Akamai system
in early 1999, it initially delivered only
Web objects (images and documents). It
has since evolved to distribute dynami-
cally generated pages and even applica-
tions to the network’s edge, providing
customers with on-demand bandwidth
and compute capacity. This reduces con-
tent providers’ infrastructure require-
ments, and lets them deploy or expand
services more quickly and easily. Our
current system has more than 12,000
servers in over 1,000 networks. Operat-
ing servers in many locations poses
many technical challenges, including
how to direct user requests to appropri-
ate servers, how to handle failures, how
to monitor and control the servers, and
how to update software across the sys-

2 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

G
lo

ba
l D

ep
lo

ym
en

t
of

 D
at

a
Ce

nt
er

s

tem. Here, we describe our system and how we’ve
managed these challenges.

Existing Approaches
Researchers have explored several approaches to
delivering content in a scalable and reliable way.
Local clustering can improve fault-tolerance and
scalability. If the data center or the ISP providing
connectivity fails, however, the entire cluster is
inaccessible to users. To solve this problem, sites
can offer mirroring (deploying clusters in a few
locations) and multihoming (using multiple ISPs
to connect to the Internet). Clustering, mirroring,
and multihoming are common approaches for sites
with stringent reliability and scalability needs.
These methods do not solve all connectivity prob-
lems, however, and they do introduce new ones:

■ It is difficult to scale clusters to thousands of
servers.

■ With multihoming, the underlying network
protocols — in particular the border gateway
protocol (BGP)2 — do not converge quickly to
new routes when connections fail.

■ Mirroring requires synchronizing the site
among the mirrors, which can be difficult.

In all three cases, excess capacity is required: With
clustering, there must be enough servers at each
location to handle peak loads (which can be an
order of magnitude above average loads); with
multihoming, each connection must be able to
carry all the traffic; and with mirroring, each mir-
ror must be able to carry the entire load. Each of
these solutions thus entails a considerable cost,
which could more than double a site’s initial infra-
structure expense and ongoing operation costs.

The Internet is a complex fabric of networks.
Congestion and failures occur at many different
places, including

■ the “first mile” (which is partially addressed by
multihoming the origin server),

■ the backbones,
■ peering points between network service

providers, and
■ the “last mile” to the user.

Deploying independent proxy caches throughout
the Internet can address some of these bottlenecks.
Transit ISPs and end-user organizations have
installed proxy caches to reduce latency and band-
width requirements by serving users directly from
a previously requested content cache. However,

Web proxy cache hit rates tend to be low — 25 to
40 percent — in part because Web sites are using
more dynamic content. As a result, proxy caches
have had limited success in improving Web sites’
scalability, reliability, and performance.

Akamai works closely with content providers to
develop features that improve service for their Web
sites and to deliver more content from the network
edge. For example, features such as authorization,
control over content invalidation, and dynamic con-
tent assembly let us deliver content that would oth-
erwise be uncacheable. Although ISP caches could
include similar features, to be useful they would
have to standardize the features and their imple-
mentation across most cache vendors and deploy-
ments. Until such a feature is widely deployed, con-
tent providers have little incentive to use it. Because
Akamai controls both its network and software, we
can develop and deploy features quickly.

Akamai’s Network Infrastructure
Akamai’s infrastructure handles flash crowds by
allocating more servers to sites experiencing high
load, while serving all clients from nearby servers.
The system directs client requests to the nearest
available server likely to have the requested con-
tent. It determines this as follows:

■ Nearest is a function of network topology and
dynamic link characteristics: A server with a
lower round-trip time is considered nearer than
one with a higher round-trip time. Likewise, a
server with low packet loss to the client is near-
er than one with high packet loss.

■ Available is a function of load and network
bandwidth: A server carrying too much load or
a data center serving near its bandwidth capac-
ity is unavailable to serve more clients.

■ Likely is a function of which servers carry the
content for each customer in a data center: If
all servers served all the content — by round-
robin DNS, for example — then the servers’ disk
and memory resources would be consumed by
the most popular set of objects.

In the latter case, an Akamai site might hold a
dozen or more servers within any data center; the
system distributes content to the minimum num-
ber of servers at each site to maximize system
resources within the site.

Automatic Network Control
The direction of requests to content servers is
referred to as mapping. Akamai’s mapping tech-

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 3

Content Delivery

nology uses a dynamic, fault-tolerant DNS system.
The mapping system resolves a hostname based on
the service requested, user location, and network
status; it also uses DNS for network load-balancing.

The “DNS Resolution” sidebar describes the stan-
dard DNS resolution process for an Akamai edge
server name, corresponding to steps 1 and 2 in Fig-
ure 1. In step 3, the client makes an HTTP request
to the edge server, which then retrieves the content
by requesting it from either another Akamai server
(step 4) or the content provider’s server (step 5). The
server then returns the requested information to the
client and logs the request’s completion.

Akamai name servers resolve host names to IP
addresses by mapping requests to a server using
some or all of the following criteria.

■ Service requested. The server must be able to
satisfy the request. The name server must not
direct a request for a QuickTime media stream
to a server that handles only HTTP.

■ Server health. The content server must be up
and running without errors.

■ Server load. The server must operate under a
certain load threshold and thus be available for
additional requests. The load measure typical-
ly includes the target server’s CPU, disk, and
network utilization.

■ Network condition. The client must be able to
reach the server with minimal packet loss, and
the server’s data center must have sufficient
bandwidth to handle additional network
requests.

■ Client location. The server must be close to the
client in terms of measures such as network

round trip time.
■ Content requested. The server must be likely to

have the content, according to Akamai’s con-
sistent hashing algorithm.

Internet routers use BGP messages to exchange net-
work reachability information among BGP systems
and compute the best routing path among the Inter-
net’s autonomous systems.2 Akamai agents com-
municate with certain border routers as peers; the
mapping system uses the resulting BGP information
to determine network topology. The number of hops
between autonomous systems is a coarse but useful
measure of network distance. The mapping system
combines this information with live network statis-
tics — such as traceroute data3 — to provide a
detailed, dynamic view of network structure and
quality measures for different mappings. Imple-
menting this mapping system on a global scale
involves several challenges, as we discuss later.

Network Monitoring
Our DNS-based load balancing system continuous-
ly monitors the state of services, and their servers
and networks. Each of the content servers — for the
HTTP, HTTPS, and streaming protocols — frequent-
ly reports its load to a monitoring application,
which aggregates and publishes load reports to the
local DNS server. That DNS server then determines
which IP addresses (two or more) to return when
resolving DNS names. If a server’s load exceeds a
certain threshold, the DNS server simultaneously
assigns some of the server’s allocated content to
additional servers. If the load exceeds another
threshold, the server’s IP address is no longer avail-
able to clients. The server can thus shed a fraction
of its load when it is experiencing moderate to high
load. The monitoring system also transmits data
center load to the top-level DNS resolver to direct
traffic away from overloaded data centers.

To monitor the entire system’s health end-to-end,
Akamai uses agents that simulate end-user behavior
by downloading Web objects and measuring their
failure rates and download times. Akamai uses this
information to monitor overall system performance
and to automatically detect and suspend problem-
atic data centers or servers.

In addition to load-balancing metrics, Akamai’s
monitoring system provides centralized reporting
on content service for each customer and content
server. This information is the basis of Akamai’s
real-time customer traffic analyzer application.
The information is useful for network operational
and diagnostic purposes, and provides real-time

4 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Akamai
server

Content provider

Top-level DNS

Low-level DNS

Edge server

User

5

4

3
2

1

Internet

Figure 1. Client HTTP content request. Once DNS resolves the edge
server’s name (steps 1 and 2), the client request is issued to the edge
server (step 3), which then requests content from the appropriate
source (step 4 or 5), satisfies the request, and logs its completion.

access to an array of service parameters organized
as a database. The application’s SQL-like interface
supports ad-hoc queries against live and historic
data, which lets the operations staff locate the
busiest customer, the server using the most mem-
ory or disk space, or the switch or data center clos-
est to its bandwidth limit.

Network Services
Akamai servers deliver several types of content:
static and dynamic content over HTTP and HTTPS,
and streaming audio and video over the three
streaming protocols described below.

Static Content
Static Web content consists of HTML pages,
embedded images, executables, PDF documents,
and so on. Akamai’s content servers use content
type to apply lifetime and other features to static
documents, which have varying cacheability and
can have special service requirements.

Lifetimes, for example, can vary from zero sec-
onds, where the edge server validates the object
with the origin server on each request, to infinite,
where the content server never checks the object’s
consistency. Lifetime values for Akamai edge
servers can also differ from downstream proxy
servers and end users.

Special features might include the ability to
serve secure content over the HTTPS protocol, sup-
port alternate content and transfer encodings,
handle cookies, and so on. Akamai controls fea-

tures on behalf of each customer using a metada-
ta facility that describes which features to apply
by customer, content type, and other criteria.

Dynamic Content
Today’s Web sites depend heavily on dynamic con-
tent generation to offer end users rich and capti-
vating material. As we noted earlier, however, proxy
caches cannot typically cache dynamic content. A
proxy cache could not, for example, handle a large-
ly static Web page if it contained an advertisement
that changed according to each user’s profile.

To deal with this, we use Edge Side Includes
technology (www.esi.org), which assembles
dynamic content on edge servers. ESI is similar to
server-side include languages, but adds fault-tol-
erance features (for when the origin server is
unavailable) and integrates an Extensible
Stylesheet Language Transformation (XSLT) engine
to process XML data. Using ESI lets a content
provider break a dynamic page into fragments with
independent cacheability properties. These frag-
ments are maintained as separate objects in the
edge server’s cache and are dynamically assembled
into Web pages in response to user requests.

The ability to assemble dynamic pages from
individual page fragments means that the server
must fetch only noncacheable or expired fragments
from the origin Web site; this reduces both the load
on the site’s content generation infrastructure and
the data that the edge server must retrieve from the
central origin server. ESI reduced bandwidth

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 5

Content Delivery

DNS Resolution

Akamai edge servers are located using a
DNS name, such as a7.g.akamai.net.A DNS
resolver resolves this name in the standard
manner, from right to left, querying DNS
name servers until IP addresses for the host
a7 in the domain .g.akamai.net are returned.

Each name resolution associates a “time
to live” (TTL) with the resolution, which
proceeds as follows:

1. The resolver chooses a root name
server and asks it to resolve the name
a1.g.akamai.net.The root name server
does not itself resolve the name; instead,
it sends a domain delegation response
with IP addresses of the name servers
that handle .net domain requests.

2. The resolver then queries the .net

name servers, which return a domain
delegation (NS records) for .akamai.net.
These are the Akamai top-level name
servers (top-level DNS in Figure 1).

3. Next, the resolver queries an Akamai TL
DNS server, which returns a domain
delegation for .g.akamai.net to low-level
Akamai name servers (LL NS in Figure
1) with a TTL of about one hour.The
low-level name servers selected
correspond to (and are in the same
location as) the available edge servers
that are closest to the requesting user.

4. Finally, the resolver queries an Akamai
low-level DNS server,which returns the
IP addresses of servers available to satisfy
the request.This resolution has a short
TTL (several seconds to one minute),

which encourages frequent refreshes of
the DNS resolution and allows Akamai
to direct requests to other locations or
servers as conditions change.

A resolver is preconfigured to know the
Internet root name servers’ IP addresses,
which are the starting points for a DNS
resolution if the resolver lacks required
information in its cache. If the resolver has
valid IP addresses of the .net name server, it
skips step 1; if it has cached IP addresses of
the g.akamai.net name servers, it skips
steps 1 through 3.

The resolution process is the same for
any DNS name.Akamai name-resolution
differs, however, in how its name servers
behave.

requirements for dynamic content by 95 to 99 per-
cent across a range of dynamic sites we studied,
including portals and financial sites. The resulting
reduction in central infrastructure offers content
providers significant savings.

Streaming Media
Akamai’s streaming network supports live and on-
demand media in the three major formats —
Microsoft Windows Media, Real, and Apple’s
QuickTime. While building a streaming delivery
network presents some technical issues that are
similar to those of a Web delivery network, there
are also significant additional challenges.

First, the content provider typically captures and
encodes a live stream and sends it to an entry-point
server in the Akamai network. Given our principle
of removing all single points of failure, we must
have mechanisms that will react quickly to a failed
entry-point server. Specifically, another entry-point
server must pick up the live stream quickly enough
that end users detect no interruption in the stream.

The stream is delivered from the entry-point serv-
er to multiple edge servers, which in turn serve the
content to end users. Media packet delivery from the
entry-point to the edge servers must be resilient to
network failures and packet loss, and thus the entry
point server must route packet flows around con-
gested and failed links to reach the edge server. Fur-
ther, the entry point and edge servers must deliver
packets without significant delay or jitter because a
late or out-of-order packet is useless in the playback.
When necessary, Akamai uses information dispersal
techniques that let the entry point server send data
on multiple redundant paths, which lets the edge
server construct a clean copy of the stream even
when some paths are down or lossy.

Typically, a content provider uploads an on-
demand clip into an Akamai content storage facil-
ity. We distribute the storage facility over many
data centers and automatically replicate the
uploaded clip to a subset of the centers. An edge
server that receives a stream request downloads
the content from its optimal storage location and
caches it locally while serving the request.

Technical Challenges
Constructing a global network poses many non-
technical challenges, including deploying network
equipment and server hardware, establishing good
working relationships with network providers,
controlling operational expenses, and acquiring
and supporting customers. While these challenges
are significant, our focus here is on challenges

related to designing, building, and operating the
system itself.

System Scalability
Akamai’s network must scale to support many
geographically distributed servers, and many cus-
tomers with differing needs. This presents the fol-
lowing challenges.

■ Monitoring and controlling tens of thousands
of widely distributed servers, while keeping
monitoring bandwidth to a minimum.

■ Monitoring network conditions across and
between thousands of locations, aggregating
that information, and using it to generate new
maps every few seconds. Success here depends
on minimizing the overhead added to DNS to
avoid long DNS lookup times; this lets us per-
form the calculations required to identify the
optimal server off-line, rather than making the
user wait.

■ Dealing gracefully with incomplete and out-of-
date information. This requires careful design
and iterative algorithm tuning.

■ Reacting quickly to changing network condi-
tions and changing workloads.

■ Measuring Internet conditions at a fine enough
granularity to attain high-probability estimates
of end user performance.

■ Managing, provisioning, and solving prob-
lems for numerous customers with varying
needs, varying workloads, and varying
amounts of content.

■ Isolating customers so that they are incapable
of negatively affecting each other.

■ Ensuring data integrity over many terabytes of
storage across the network. Because low-level
(file system or disk) checks are inadequate to
protect against possible errors — including
those caused by operators and software bugs —
we also perform end-to-end checks.

■ Collecting logs with information about user
requests, processing these logs (for billing), and
delivering accurate, timely billing information
to customers.

To meet the challenges of monitoring and control-
ling content servers, Akamai developed a distrib-
uted monitoring service that is resilient to tempo-
rary loss of information. To solve problems for
customers, Akamai has customer-focused teams
that diagnose problems and provide billing services.

System Reliability

6 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

A distributed system offers many opportunities for
fault-tolerance, but it also introduces many com-
ponents that could fail. This is partly a problem of
scale: System failures must be detected and cor-
rected across multiple software platforms. It’s also
inevitable that computer hardware will age, partic-
ularly disks and other moving parts. As a large net-
work’s equipment ages, a fraction of the devices
will fail each month. Network operations staff must
detect failure reliably and remove units from ser-
vice quickly so they can be shipped to a warehouse
and perhaps repaired and returned to service.

Akamai’s monitoring and mapping software
ensures that server or network failures do not affect
end users, and the DNS system detects failures
quickly and immediately hands out new IP address-
es. For customers still using cached DNS answers,
two mechanisms help prevent denial of service: the
DNS resolution can return multiple IP addresses, so
that the client can try another address; or a live
server at the site can assume the failed server’s IP
address. To prevent problems when network fail-
ures make sites unreachable (due to router and
switch problems, for example), the top-level (TL)
DNS will identify local DNS servers at different sites
to ensure that clients can reach a live DNS server.

Again, to prevent outages, we must carefully
avoid single points of failure throughout the sys-
tem. Our edge servers provide massive replication
for content delivery and DNS request processing.
We also avoid single failure points by replicating
monitoring and control mechanisms.

Finally, we must detect and repair software
flaws. A key challenge in Web content service is
that client requests and server responses are not
static — new request and response headers regu-
larly appear as vendors enhance their browsers
and servers, and edge servers must interpret these
changes correctly and efficiently. Because such
enhancements can come at any time, it’s infeasi-
ble to test new versions on all relevant browser
and content-server versions; testing content serv-
er features with the top browser and content serv-
er configurations alone creates a very complex
testing matrix. To address this challenge, we cre-
ated a test tool that directs a copy of a live serv-
er’s traffic to a test version of our software with-
out affecting content service. This real-world
traffic enables us to find problems before software
is deployed to the live network.

Software Deployment
and Platform Management
In addition to expanding the network’s size and

scope, software must evolve with new features for
customers, improved performance, and better
operational and monitoring capabilities. To meet
this challenge, we must deploy high-quality soft-
ware to servers on many networks, sometimes
quickly to accommodate a rapid time-to-market
business model.

We cannot upgrade software on the entire net-
work atomically. If nothing else, prudence dictates
that we deploy new network software in stages so
that we can detect problems before they have sig-
nificant impact. Also, it’s unlikely that all edge
servers (or even all networks) will be available at
the same time. Inevitably, we’ll miss some servers
and have to update them at a later time. As a
result, it’s more the rule than the exception to have
two versions of a software component live on the
network at the same time. Given this, we must
write components so that different versions can
coexist and carefully manage changes to compo-
nent interfaces. Network operations must contin-
ually monitor the network and suspend any incor-
rectly configured servers.

The servers in the Akamai network run on
Linux and Windows operating systems. Operating
multiple OS platforms and services requires a
monitoring platform and tools that run across
those platforms and have access to servers’ service
delivery parameters. This information is required
for load balancing (local and global) as well as to
support problem diagnosis for operations and cus-
tomer care. Finally, running multiple platforms
and applications requires expertise in all support-
ed platforms and servers.

Content Visibility and Control
Akamai’s network distributes and serves content
for providers, who must retain control over their
content as we serve it at the edge, and see real-time
information about what content is served to whom
and when. Providing this visibility and content
control offers challenges in cache consistency, life-
time and integrity control, and several other areas.

Cache consistency. When objects that the edge
servers deliver are cacheable, we must address the
consistency of cached content; when they are un-
cacheable, high-performance delivery is a challenge.

To address cacheable-object consistency, content
providers often use established techniques, such as
applying a “time to live” (TTL) to objects. Some
objects might be cacheable forever, or at least until
they are explicitly removed by a cache control util-
ity (for more on this, see the “Lifetime Control” sec-

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 7

Content Delivery

tion). Another approach is to use a different URL
for each object version. In addition to using a
unique query string for this purpose, we let cus-
tomers place a version or generation number in the
URL. Versioned objects typically have infinite TTLs.

To improve uncacheable objects’ performance,
we introduce an edge server between the client and
origin to split the client’s TCP connection into two
separate connections — one from the client to the
edge server and one from the edge server to the
origin. Contrary to intuition, splitting the connec-
tion can deliver faster responses in some cases
because the edge server can react to packet loss
more quickly than the origin server, improving the
connection’s bandwidth-delay product. We also
map clients to edge servers that have low conges-
tion and packet loss. Furthermore, the edge server
can accept the origin server’s response faster than
the client could, and can serve it from memory at
the client’s pace. This frees up origin server

resources to serve subsequent requests, reducing
origin site demand even for uncacheable content.
Finally, the edge server can maintain much longer
persistent connections with the client than can an
origin server; the origin need only maintain con-
nections with relatively few Akamai edge servers.

Lifetime control. In some cases, the edge server
must remove certain objects from all servers on
demand. This might be in response to a request
from an Akamai customer (the content’s provider),
or initiated by an interface that lets content pub-
lishing systems schedule invalidations when con-
tent changes. Because most Web objects change
infrequently,4 heuristic caching policies in Web
proxies typically hold copies long after they
change. Akamai’s edge servers support on-demand
purges for changed or otherwise invalid content.

Authentication and authorization. When serving

8 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

Related Work in Distributed and Fault-Tolerant Systems

Akamai system technology builds on years
of research and development in distributed
and fault-tolerant systems.Many other parts
of the Internet — such as the network
routing fabric, the DNS,email, and the Web
itself — rely on some communication and
coordination among decentralized asyn-
chronous components. In contrast, the Aka-
mai system uses logically centralized (but
distributed and replicated) administration
and control to map requests to servers and
to manage the entire system. Other sys-
tems also use logically centralized control.
The Autonet,1 for example, uses a central-
ized algorithm to recompute and distribute
routing tables when the network topology
changes. In contrast to systems like the
Autonet, which recomputes routes only in
response to failures and component addi-
tions, the Akamai system remaps requests
continuously based on service health and
load, and the network connection quality
among components and between compo-
nents and end users.

Web-Based Caching
Distributed systems research also has a long
history of distributed data systems work on
databases,2 file systems,3 and caches.4 The
Web offers two significant advantages here:

data is primarily read-only, and the users are
typically people,which means they are more
tolerant of data inconsistencies than pro-
grams are.This makes keeping caches con-
sistent with data sources relatively easy
compared to similar problems in distributed
databases and file systems.

The Web has long used caching, first in
browsers and then in forward proxies.
Recent research, however, suggests that
corporate and ISP Web caching use is not
significant.5 Web caching’s lack of success
relative to other types of caching might be
because Web proxy caches are not closely
coordinated with the data sources; caching
software is built and administered by orga-
nizations distinct from those that provide
the data. In contrast,Akamai maintains a
direct relationship with content providers,
which drives innovation and allows other-
wise uncacheable content to be served
from the edge.

Update and Management Tools
Several package and updating management
tools address software update and man-
agement in large distributed computing
environments.Depot6 achieves reliable sys-
tem update using modular package and
internal consistency verification. Depot

relies primarily on a shared global file sys-
tem for secure data distribution.Akamai,
however, uses public-key techniques to
deliver updates over HTTP, and achieves
performance and scalability by using the
Akamai network itself for the delivery.

References
1. M. Schroeder et al.,“Autonet:A High-Speed, Self-

Configuring Local Area Network Using Point-to-

Point Links,” IEEE J. Selected Areas in Comm., vol. 9,

no. 8, Oct. 1991, pp. 1318-1335.

2. P. Bernstein,V. Hadzilacos, and N. Goodman, Con-

currency Control and Recovery in Database Systems,

Addison-Wesley, Reading Mass., 1987.

3. M. Satyanarayanan,“A Survey of Distributed File

Systems,” Annual Rev. of Computer Science, Annual

Reviews, Inc., Palo Alto, Calif., 1989, pp. 447-459.

4. B.Davidson,“A Survey of Proxy Cache Evaluation

Techniques,” Proc. 4th Int’l Web Caching Workshop,

1999; available at http://citeseer.nj.nec.com/davi-

son99survey.html.

5. S. Gadde, J. Chase, and M. Rabinovich, “Web

Caching and Content Distribution:A View From

the Interior,” Computer Comm., vol. 24, no. 2, 2001,

pp. 222-231.

6. W. Colyer and W.Wong,“Depot: A Tool for Man-

aging Software Environments,” Large Installation Sys-

tem Administration (LISA) VI Proc., Usenix Assoc.,

Berkeley, Calif., 1992, pp. 153-162.

protected content, edge servers must either con-
tain authorization features or relay authentication
tokens to the origin server for authorization. In the
latter case, the edge server must be careful not to
evict the protected content on a request autho-
rization failure. Akamai lets content providers
authorize every user request from their own site
by passing request headers from our edge servers
to their content servers prior to serving each client
request. Akamai edge servers can also process
authorization tokens that the origin server attach-
es to the request, thereby avoiding a round trip to
the origin server on each request.

Integrity control. A server must ensure that each
client request receives the correct response, and also
detect when origin servers issue incomplete respons-
es and avoid caching those responses. Edge servers
can contain content from many customer origin
servers, and it’s imperative that they not serve con-
tent to the wrong customer — regardless of the con-
tent’s name or how clients access it. Furthermore, a
server should detect when cached objects become
corrupted (due to disk failure, for example) and re-
fetch them if they do. In Akamai’s system, we have
built a content integrity check feature into our soft-
ware; prior to serving each block of a response, the
server double checks that the content is associated
with the request. This protects the edge server from
serving content that was corrupted on disk or con-
fused in memory due to a software error.

Visibility into access patterns. Customers want to
see detailed content-access logs. To offer this, we
aggregate individual server logs and extract relevant
entries for each customer. Log delivery and aggre-
gation involves a significant data flow, however, and
collecting and processing all the logs can take time.
Some content providers also want real-time deliv-
ery information about their site. In this case, we
focus on giving customers content delivery rates and
client locations, rather than full log details.

Billing. Revenue from the content providers we
serve supports our network operation. Billing
requires aggregating information from each serv-
er and processing it to reduce the information vol-
ume from billions of log lines to a summary of a
month’s worth of content access. Scaling back-end
billing infrastructure is as important as scaling
client-facing servers: As the number of servers and
customers grows, so too does the amount of log
information we must process.

Conclusion
Current work at Akamai is focused on running
applications at the network’s edge, bringing the
benefits of wide area content delivery into the
application space. Running applications on a glob-
ally distributed network of computers provides
many of the same advantages as simple content
delivery: capacity on demand, cost-effective use
of shared resources, ability to respond to users
without communicating over long distances, and
so on. At the same time, it poses many new and
interesting challenges. For example, customers
need visibility into the behavior of their running
applications, even though the machines that run a
given application might change from day to day
or even minute to minute. Similarly, applications
must be sandboxed to ensure that one customer’s
application does not interfere with that of anoth-
er customer. Also, applications typically need
access to data, which must be distributed in some
fashion along with the applications. Many of these
problems are quite difficult, if not impossible, to
solve in their full generality. The challenge is to
identify design patterns that provide useful and
cost-effective solutions.

Acknowledgments
We are grateful for comments and suggestions from Julia
Austin, Chris Joerg, Hal Jordy, David Judson, Marty Kagan,
Eisar Lipkovitz, Daniel Stodolsky, Perry Stoll, and the anony-
mous reviewers.

References

1. D. Karger et al., “Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web,” Proc. 29th Annual ACM Symp. The-
ory of Computing, ACM Press, New York, 1997, pp. 654-
663.

2. Y. Rekhter and T. Li, A Border Gateway Protocol 4, Inter-
net Eng. Task Force RFC 1771, Mar. 1995; available at
www.ietf.org/rfc/rfc1771.txt.

3. G. Malkin, Traceroute Using an IP Option, IETF RFC 1393,
Jan. 1993; available at www.ietf.org/rfc/rfc1393.txt.

4. F. Douglis et al., “Rate of Change and other Metrics: A Live
Study of the World Wide Web,” Symp. Internet Technology
and Systems, Usenix Assoc., Berkeley, Calif., 1997.

John Dilley is a principal architect at Akamai Technologies. He
helped develop the proxy software that delivers HTTP con-
tent, managed the development team, and is now building
next-generation proxy software. His research interests
include distributed systems design and performance. Dil-
ley received a BS in mathematics and a BS and MS in com-
puter science from Purdue University. He is a member of

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2002 9

Content Delivery

the IEEE Computer Society.

Bruce Maggs is an associate professor of computer science at
Carnegie Mellon University and vice president of research
at Akamai Technology, which he helped launch. He
received a BS, MS, and PhD in computer science from the
Massachusetts Institute of Technology.

Jay Parikh is a director of engineering at Akamai Technologies.
He managed the development and launch of Akamai ser-
vices, including ESI and FirstPoint, and currently manages
the team building Akamai’s next-generation Edge Com-
puting distributed application services. He received a BS in
mechanical engineering from Virginia Tech.

Harald Prokop is a senior software engineer at Akamai Tech-
nologies. He joined Akamai in 1999, and now leads the
design and development of the mapping system. His research
interests include high-performance computing, parallel and
distributed computing, and memory-efficient algorithms.
Prokop received an MS in computer science from MIT.

Ramesh Sitaraman is a principal architect at Akamai Tech-
nologies, where he heads Akamai’s product and services
performance group. He is also an associate professor of
computer science at the University of Massachusetts,
Amherst. His research interests include parallel and dis-
tributed architectures and algorithms, and he is associate
editor of the IEEE Transactions on Parallel and Distributed
Systems. Sitaraman received a PhD in computer science
from Princeton University.

Bill Weihl is chief architect for edge services at Akamai Tech-
nologies. Prior to joining Akamai in 1999, he was a professor
at MIT and a research scientist at Digital’s Systems Research
Center. His research interests include distributed and parallel
computing, programming languages, fault-tolerance, and
computer architecture. He is a member of ACM and the IEEE.

Readers can contact the authors at {jad, bmm, jay, prokop,
ramesh, bweihl}@akamai.com.

10 SEPTEMBER • OCTOBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Global Deployment of Data Centers

