
Domain-Sharding for Faster HTTP/2 in Lossy Cellular Networks
Utkarsh Goel∗, Moritz Steiner∗, Mike P. Wittie†, Stephen Ludin∗, Martin Flack∗

∗Akamai Technologies, Inc. – {ugoel, moritz, mflack, sludin}@akamai.com
†Montana State University – mwittie@cs.montana.edu

Abstract—HTTP/2 (h2) is a new standard for Web
communications that already delivers a large share of Web traffic.
Unlike HTTP/1, h2 uses only one underlying TCP connection.
In a cellular network with high loss and sudden spikes in
latency, which the TCP stack might interpret as loss, using a
single TCP connection can negatively impact Web performance.
In this paper, we perform an extensive analysis of real world
cellular network traffic and design a testbed to emulate loss
characteristics in cellular networks. We use the emulated cellular
network to measure h2 performance in comparison to HTTP/1.1,
for webpages synthesized from HTTP Archive repository data.

Our results show that, in lossy conditions, h2 achieves
faster page load times (PLTs) for webpages with small objects.
For webpages with large objects, h2 degrades the PLT. We
devise a new domain-sharding technique that isolates large
and small object downloads on separate connections. Using
sharding, we show that under lossy cellular conditions, h2 over
multiple connections improves the PLT compared to h2 with
one connection and HTTP/1.1 with six connections. Finally, we
recommend content providers and content delivery networks to
apply h2-aware domain-sharding on webpages currently served
over h2 for improved mobile Web performance.

Index Terms—Cellular, emulation, HTTP/2, sharding.

I. INTRODUCTION

The widely adopted HyperText Transfer Proto-
col (HTTP/1.1) improves performance of the request-response
model by pipelining requests on the server side. However,
with HTTP/1.1 (h1) servers transfer resources only in the
order they receive requests. This behavior of h1 creates a
head-of-line (HOL) blocking for all requests on the application
layer and slows down the webpage load time (PLT), especially
when faster requests have to wait in the pipeline for the
slower requests to finish processing.

To mitigate this HOL blocking, modern Web browsers and
content providers (CPs) take different approaches. Specifically,
Web browsers establish up to six TCP connections for each
domain name on the webpage [35], which allows the browser
to request six objects in parallel, but wait for the seventh
object until one of the six connections becomes available.
On the other hand, CPs design their websites such that the
embedded objects are distributed across multiple domain
names, a technique known as Domain-Sharding [35]. The
combination of the above two techniques allows Web
browsers to establish six connections for each of the many
domain names to perform parallel downloading of resources
and thus mitigate the HOL blocking.

The HTTP/2 (h2) protocol, standardized in May 2015,
follows a different approach to eliminate HOL blocking on
the application layer [19]. Instead of using domain sharding
and opening multiple TCP connections for each domain
name, h2 uses only one TCP connection to exchange all

request and response payloads. Specifically, instead of relying
on pipelining all requests as in the case of h1, h2 allows
multiplexing and interleaving of all requests and responses
such that incoming requests could be processed in parallel
and in any order determined by the server.

While h2 eliminates HOL blocking on the application layer,
it retains HOL blocking on the transport layer [19], [39], [42].
Specifically, since h2 utilizes TCP as its transport protocol,
packet loss on h2’s single TCP connection reduces the
congestion window by 50% (and 30% in the case of
TCP CUBIC [38]). While h1 also utilizes TCP and suffers
similarly in the event of packet loss, for h1 Web browsers
establish six TCP connections and packet loss does not
degrade the cumulative congestion window as much as it does
for the single TCP connection in the case of h2. Previous
studies have shown either improvement or degradation
in PLTs when loading webpages over h2, compared to
h1 [21], [23], [25], [41], [49], [53], [55]. The disagreement
about h2 performance creates uncertainty among CPs
and their surrogate proxy infrastructures (content delivery
networks, CDNs) as to whether and how to follow suit.
Should CDNs continue to serve mobile Web content over h1,
or argue to their CP customers the performance benefits of
serving webpages over h2 in mobile networks?

In this paper, we answer these questions through a
comprehensive comparison of h1 and h2 performance in
cellular networks. Specifically, we investigate the impact of
packet loss on PLT when using h1 over six TCP connections
and h2 over one TCP connection. We also investigate whether
the webpage structure has implications on h2 performance.
In order to understand Web performance, we first extend our
previous work to understand the dynamic nature of cellular
network characteristics in terms of packet loss, round trip
time, and bandwidth [31]. Specifically, we develop several
techniques to emulate various cellular network conditions as
observed for cellular carriers in rural and urban areas. We
then replay the network conditions and compare PLTs using
h2 and h1 as application layer protocols.
We classify our five major contributions as follows:

Dataset Richness: Our analysis of cellular network character-
istics is based on 50 K TCP connections captured over several
days from an Akamai CDN cluster hosted inside a data-center
of a major cellular network provider in the US. Our collected
TCP traces represent the characteristics of a real world cellular
network, as the TCP connections to the selected Akamai
CDN cluster are not influenced by any interference from the
public Internet [11]. This is because the selected CDN cluster
serves traffic only to cellular clients in that ISP. We provide



the details on our data collection technique in Section IV.

Identifying Cellular Network Characteristics: Our analysis
of live TCP traces captured from a CDN cluster suggests three
unique characteristics of cellular networks.

• We observe that about 32% of the TCP connections over
cellular networks experience packet loss. We also make sim-
ilar observations in our previous work of detecting TCP ter-
minating proxies across cellular networks worldwide, where
we use the packet loss information in the TCP logs provided
by Linux kernel of production Akamai CDN servers [30].

• Next, we observe that packet losses in cellular networks
are clustered – several consecutive TCP segments are lost
at the same time. Our observations are similar to the recent
work of Flach et al., where they found that traffic policers
introduce high packet loss rate in cellular networks [26].

• Finally, we observe that TCP connections over cellular
networks experience packet loss multiple times during their
lifetime. Additionally, when a loss occurs, up to 40% of
the TCP segments flowing over the connection at that time
are dropped. Note that this loss rate is different from the
cumulative packet loss the connection experiences during
its entire lifetime.

Measurements: Our comprehensive view of cellular network
characteristics from an Akamai CDN cluster deployed
inside cellular ISP datacenter allows us to improve existing
cellular network emulation techniques. Specifically, existing
network emulators, such as TC NETEM [16], Network
Link Conditioner [52], and others, introduce packet loss
on a link at random times during emulation. An emulation
model dependent on random occurrences of loss does
not provide a realistic representation of cellular network
conditions. Therefore, based on the observations we make
about cellular network characteristics, we emulate several
cellular network conditions in terms of packet loss rate, time
gap between two loss events, round trip time (RTT) between
the client and the CDN server, and bandwidth attributed
to cellular base stations. To allow further research in this
direction, we make our emulation script available at https:
//github.com/akamai/cell-emulation-util.

Investigating HTTP/2 Performance: We make extensive
use of the HTTP Archive repository to synthesize several
webpages that represent real world websites [15]. For
example, we synthesize a webpage with hundreds of small
objects (less than 1 KB each), a webpage with a few large
objects (about 435 KB each), and several webpages with tens
of objects ranging from 1 KB to 620 KB in size. Using the
emulated network, we conduct several experiments to compare
PLTs of these webpages loaded in turn over h2 and h1. We
list the results from our experimental evaluation as follows:

• We observe that for a webpage with hundreds of small
sized objects, h2 outperforms h1 in all emulated network
conditions, except in the condition where the single TCP
connection of h2 frequently experiences loss.

• Next, we observe that for a webpage with a few large
objects, h2 does not outperform h1 at all. In fact, the
PLTs over h2 are significantly higher than h1.

• And finally, we observe that for a webpage with object sizes
ranging from 1 KB to 620 KB, h2 outperforms h1 when
the webpage has few large objects and many small objects.
However, as the number of large objects increase (keeping
the total number of objects on the webpage same), the
performance of h2 is comparable to h1. Additionally, as
the network conditions on h2’s single TCP connection
worsen, PLTs observed over h2 are much larger than the
PLTs observed over h1 under the same network conditions.

Sharding Webpages for Faster PLTs over HTTP/2: To
the best of our knowledge, there is currently no known best
practice as to how h2 should be tuned to minimize the
impact of loss on PLT. In this work, we side-step from the
recommendation of disabling domain-sharding in h2 [7],
[19], [35], [36], [40], [46]. Our goal is not to argue that
domain-sharding is necessary to speedup PLTs for h2-enabled
webpages – only future evaluations will demonstrate the
relative benefits of domain-sharding and other methods for
reducing PLTs. Instead, we investigate whether a technique
that enables application layer control of how Web objects are
downloaded can be effective and safe in its own right. We
now discuss its implications on Web performance as follows:

• We perform experimental evaluation to demonstrate
that multiple h2 connections improve the mobile Web
performance in lossy cellular network conditions, when
compared to both h2 with single TCP connection and h1
with six TCP connections.

• We investigate and develop a new domain-sharding
technique that isolates large downloads on separate TCP
connections, while keeping downloads of small objects
on a single connection. Our devised domain-sharding
technique is different from the legacy sharding technique
currently used in the case of h1. Specifically, current
sharding techniques distribute webpage resources over
several domain names depending upon the type of object.
For example, the domain img.example.com is used for
all images irrespective of the image size.

• Through experimental evaluation, we demonstrate that h2
achieves faster or comparable PLTs to h1 when using
our domain-sharding technique. The PLTs over h2 when
using the legacy sharding technique results in worse PLTs.
Therefore, we recommend CPs and CDNs to apply h2-
aware domain-sharding practices for h2-enabled webpages.

The rest of the paper is organized as follows. In section II,
we discuss related work that investigates and improves Web
performance over h2. In Section III, we discuss our need to de-
velop an emulation testbed, instead of using already deployed
systems, for analyzing cellular network characteristics. Next,
we discuss our data collection process in Section IV and our
characterization of cellular network conditions in Section V.
In Section VI, we discuss various emulated cellular network
conditions. In Section VII, we compare Web performance
over h1 and h2 and present a novel domain-sharding
technique to speed up PLTs in Section VIII. In Section IX,
we discuss the challenges in validating our mobile emulator.
In Section X, we discuss the practical implications of applying
domain-sharding. Finally, we conclude in Section XI.



II. RELATED WORK

While the QUIC protocol is being designed to eliminate
HOL blocking on both transport and application layers, QUIC
is not a standard yet and will likely require several years
before its widespread adoption by CPs for the production
traffic [39]. The BBR protocol is another transport layer
development that allows faster loss discovery/recovery in
high loss scenarios [22]. However, our results show that
domain-sharding improves PLTs across various emulated high
and low loss scenarios. Therefore, we argue that even with
a loss-resistant TCP stack, multiple connections will still
enable h2 to achieve faster PLTs.

A study by Mi et al. shows the performance of a modified
version of standard h2 protocol between custom clients and
Web servers that establishes new TCP connections every
time the server detects a large object being requested by the
client [43]. While the study shows h2 performance benefits
when isolating large downloads on separate TCP connections,
the modified protocol adds latency to the overall PLT by
establishing new TCP connections when a request for large
object is detected by the server. In contrast, we provide an
application layer solution that minimizes the impact of TCP
HOL blocking on h2’s performance, without the need of
any changes to the client Web browser. Specifically, our
work improves PLTs over h2 by establishing multiple TCP
connections as soon as the domain-sharded HTML for the
base page is available and parsed by the Web browser.

A study by Varvello et al. investigates the adoption and per-
formance of h2 for top ranked webpages, when measured from
wired and mobile hosts [53]. Their evaluation of PLT over h2
indicates performance improvement for some websites and
degradation for others, due to reasons associated with latency
between hosts and Web servers. Bocchi et al. also measure h2
performance, however they stop short of explaining reasons
behind the observed performance differences [21]. Other
studies compare performance of h2 without TLS support with
h1 in clear-text, using 3G USB modems [23] and network sim-
ulations using static configurations on TC NETEM [23], [41].
Emran et al. compare SPDY performance with h1 over a
production cellular network [25]. Their results indicate that
SPDY degrades Web performance in lossy cellular conditions.

Previous studies collectively do not suggest clear improve-
ments in Web performance when using h2 protocol for mobile
content delivery. In contrast to these studies, our goal is to
disambiguate previous results through controlled experiments
using synthetic webpages that represent structures of popular
webpages. Therefore, we investigate PLTs for synthetic web-
pages and show the impact of object size on PLT, when using
h2 in dynamically changing lossy cellular network conditions.

A study by Wang et al. investigates the impact of SPDY
protocol on Web performance in various simulated cellular
network conditions [55]. Their results indicate that SPDY
helps for some pages but hurts for others. Additionally,
their study implements domain-sharding as it appears on
many webpages using h1, i.e. sharding objects by their type.
The authors then investigate the impact of domain-sharding
on PLT and identify that sharding does not improve Web
performance. In contrast, our work investigates the impact of

domain-sharding based on the object size and make a case
for applying domain-sharding to download all small objects
one connection and large objects on separate connections.

III. WHY A NEW CELLULAR EMULATION TESTBED?

Akamai’s global infrastructure for content delivery serves
webpages for its CP customers and processes a total of over
40 million HTTP requests every second from clients around
the globe. Many of its CP customers desire to understand
the performance of how fast their websites load on clients
in different networks. To understand the performance of Web
content delivery on production traffic, Akamai utilizes Real
User Measurement (RUM) [8] system that uses the Web
browser exposed Navigation Timing API [9] to capture several
performance metrics pertaining to webpage load. Specifically,
when clients request the base page HTML, Akamai’s RUM
system injects custom JavaScript that runs on the client’s
browser and uses the Navigation Timing API to record the
time taken to perform DNS lookup of the base page domain
name, time to establish TCP connection, and the overall PLT,
among many other metrics [29], [30]. While RUM allows for
large scale measurements across many mobile networks and
client devices, it does not record transport layer metrics, such
as packet loss rates and timestamps of loss occurrence during
the lifetime of a TCP connection. These problems have also
been discussed at the recent PAM conference [20].

Moreover, a recent study shows that webpages are loaded
over h2 only by modern hardware and Web browsers,
whereas h1 is used predominantly by older hardware and
Web browsers [49]. Given that mobile hardware significantly
impacts the PLT [50], RUM measurement data pertaining to
h2 and h1 performance is skewed. It is possible to configure
CDN clusters to serve webpages over h2 only 50% of the time
and thus perform a fair comparison with h1 when webpages
are loaded over the same mobile hardware. However, modern
webpages contain many resources that are often downloaded
over transport and application layer protocols different than
the ones used by the base page [32], e.g. the base page being
loaded over h2 but most other objects over h1. Using RUM
for such webpages will further skew the PLTs in our analysis
of real world performance of h2 and h1.

Finally, existing mobile network measurement tools,
such as Akamai Mobitest [3], WebPageTest [1], RadioOpt
Traffic Monitor [10], Gomez Last-Mile [2], Keynote [13],
4GMark [4], nPerf [6], and WProf [54] also do not emulate
or record the live loss rates found in real world cellular
networks when measuring Web performance. In fact, many
of these and other tools rely on Navigation Timing API and
inherit its limitations as discussed earlier [33].

Given the aforementioned limitations of existing Web
performance measurement APIs/tools, we develop a testbed to
emulate different cellular network conditions by investigating
live TCP traffic captured from a real world cellular network.

IV. DATA COLLECTION METHODOLOGY

Akamai accelerates its content delivery by deploying its
CDN clusters in close proximity to many cellular ISPs’ packet
gateways (P-GWs) [30], [57], [59]. In fact, many of Akamai’s



1
2

5
10

0.14 0.42 0.7 0.98 1.26
Time During Connection (S)

#R
et

ra
ns

m
itt

ed
 P

ck
ts

.

Fig. 1: Clustered retransmissions at dif-
ferent times during connections.

0
1

2
3

4
5

6

Independent TCP Connections

Ti
m

e 
G

ap
 (s

)

Fig. 2: Time gap between retransmission
clusters for different connections.

0
10

20
30

40

Independent TCP FlowsR
et

ra
ns

m
is

si
on

 R
at

e 
(%

)

Fig. 3: Retransmission rates for different
connections.

CDN clusters are deployed deep inside network datacenters
of cellular ISPs [11]. We selected one such CDN cluster co-
located with a P-GW of a major cellular ISP in the US to pas-
sively capture live TCP traffic pertaining to that cellular net-
work. Our choice of the selected CDN cluster is based on the
fact that the TCP connections to the cluster are not at all influ-
enced by any interference from the outside public Internet and
that the cluster is one of the biggest Akamai clusters hosted
in that cellular ISP. This is because the selected CDN cluster
only serves Web content to cellular clients in that ISP [11].

Next, we ran TCPDump on each CDN server in the cluster
at different times of a day to capture incoming and outgoing
TCP segments. Previous works, including our own, show
that the cellular network chosen in this study uses TCP
terminating proxies to split TCP connections between mobile
clients and CDN servers on port 80, but never does so for
connections to port 443 [30], [58]. Therefore, we only capture
TCP segments to-and-from port 443, which ensures that the
captured segments are for end-to-end connections between
clients and CDN servers, as opposed to segments from the
TCP terminating proxy [58].

Next, for each TCP connection captured in TCPDumps,
we use tshark to extract four characteristics periodically
every 70 ms [17]. The four characteristics are the number of
segments exchanged between the client and the server, the
number of bytes exchanged between the client and the server,
the number of segments retransmitted by the server, and the
average time lapse between acknowledgments. Note that the
first 70 ms interval starts when the TCP SYN is received by
the server. The choice of 70 ms as the time interval to calculate
the above four metrics is based on our previous work showing
that 70 ms is the median Round Trip Time (RTT) between
clients in the chosen cellular network and the selected Akamai
CDN cluster [30]. Therefore, in the median case we expect
the above mentioned three metrics to change after 70 ms.

Our total dataset consists of the above mentioned metrics for
about 50 K TCP connections captured on port 443. Note that
the number of connections captured are limited to 50 K be-
cause these connections represent only the HTTPS traffic cap-
tured to-and-from one of the P-GWs deployed by the chosen
cellular ISP. We observe that the quality of TCP connections
analyzed in this study is consistent with the quality analyzed
in previous work conducted at a different time from the same
P-GW [31]. Therefore, we argue that our way of profiling
TCP connections is independent of the time when TCP traffic
is captured. Further, although in our investigation we capture

TCP traffic from one cluster co-located with one P-GW, our
analysis of loss from the captured TCP traffic indicates similar
packet loss to what is found in many other networks in North
America and Europe when analyzing loss from different CDN
clusters [26], [30]. Therefore, we speculate that our findings in
this study are potentially applicable to other cellular networks.

V. CELLULAR NETWORK CHARACTERISTICS

The packet traces captured with TCPDump we use in our
study only indicate retransmissions by the server, not per se
packet loss in the network. For example, while the server
could retransmit due to socket timeouts caused by temporary
congestion, or packet drop in the network due to corruption,
TCP congestion control interprets both these events as
congestion in the network and retransmits the segments it
infers are lost [27]. Our approach to identify loss relies on
reverse engineering TCP’s reaction to the changing dynamics
of the cellular network. We argue that from the outside of a
cellular network it is impossible to identify the real cause of a
retransmission. From this point forward in the paper, we refer
to packet loss as the TCP segments retransmitted by the server
and use the terms loss and retransmission interchangeably.

Next, we make four observations when analyzing the
captured TCP traffic. The first observation we make is that
about 32% of the total TCP connections in the chosen cellular
network experience packet loss. This observation is similar
to our previous work on detecting TCP terminating proxies
in cellular networks worldwide, where we use the packet loss
information in the TCP logs provided by Linux kernel of
production Akamai CDN servers [30].

The second observation we make is that losses in cellular
networks are clustered. In other words, when TCP interprets
congestion, the server often retransmit many consecutive TCP
segments. In Figure 1, we show several boxplots, each for a
70 ms slice, representing distributions of the number of TCP
segments retransmitted by servers across all TCP connections.
Note that we only show number of retransmissions for
those TCP connections that experienced retransmissions in
the selected time slice on x-axis. The x-axis represents the
timestamp when a 70 ms slice finishes. The y-axis represents
the number of packets retransmitted by server on a log
scale. From the figure we observe that many individual
TCP connections experience clustered retransmissions. For
example, during the time slice finishing at 420 ms, we
observe that servers retransmit clusters of 5, 10, and even 20
segments for different TCP connections. Although we observe
clustered retransmissions for connections existing longer than



0 20 40 60 80 1000.
0

0.
4

0.
8

Retransmission Rate (%)

C
D

F 
of

 T
C

P
 F

lo
w

s

p10
p25
p50
p75
p90

Fig. 4: Distributions of retrans-
mission rates.

0 1 2 3 4 50.
0

0.
4

0.
8

Time Gap (s)

C
D

F 
of

 T
C

P
 F

lo
w

s

p10
p25
p50
p75
p90

Fig. 5: Distributions of time
gaps in retransmissions.

0 2 4 6 8 100.
0

0.
4

0.
8

Throughput (Mbps)

C
D

F 
of

 T
C

P
 F

lo
w

s

p10
p25
p50
p75
p90

Fig. 6: Distributions of esti-
mated throughput.

0.0 0.1 0.2 0.3 0.4 0.5 0.60.
0

0.
4

0.
8

RTT (s)

C
D

F 
of

 T
C

P
 F

lo
w

s

p10
p25
p50
p75
p90

Fig. 7: Distributions of RTT
between ACK segments.

2.1 seconds, for figure clarity we restrict the figure to the first
2.1 seconds. Our observations are similar to the recent work
of Flach et al., where the authors observe that traffic policers
introduce high packet loss rate in cellular networks [26].

The third observation we make is that TCP connections ex-
perience retransmissions at multiple times during their respec-
tive lifetimes. In Figure 2, for each connection we show a box-
plot distribution representing the time gaps between retrans-
mission clusters observed in subsequent 70 ms slices. Since
we record the occurrence of retransmission clusters at every
70 ms, each time gap is at least 70 ms long. From the figure
we observe that for several connections the subsequent retrans-
mission clusters appear within 500 ms. In other words, many
connections experience clustered loss every half a second.

Finally, the fourth observation we make is that when a
TCP connection experiences clustered retransmissions, in a
70 ms slice up to 40% of the segments are retransmitted by
the server. We support this claim through Figure 3, where for
each TCP connection we show a boxplot distribution of rate
of retransmitted TCP segments, across different 70 ms time
slices. Note that this retransmission rate is different from
the aggregate retransmission that the connection experiences
during its entire lifetime. For example, while there could
be 20% segments retransmitted in a given 70 ms time slice,
however, the aggregate retransmission rate for the connection
can be significantly lower than 20%.

VI. EMULATING CELLULAR NETWORKS

One of the goals of this study is to improve existing
techniques for emulating cellular networks. While there exist
many network emulators to model loss, latency, and bandwidth
between clients and servers, such as TC NETEM [16],
Network Link Conditioner [52], these emulators introduce
packet loss on network links at random times during
emulation. Such emulators do not achieve a realistic emulation
of cellular networks as loss in cellular networks does not occur
at random times. Using TC NETEM and our observations from
Section V, we develop a testbed that refines how packet loss
is introduced on network links between clients and servers.

Next, using only the captured TCP connections that expe-
rienced loss (32% of the collected dataset), we develop two
emulation scenarios: 1) network quality observed in different
situations, such as good or bad reception, stationary or moving
user; and 2) time gap between retransmission clusters, or how
frequently a TCP connection experiences loss. For the first
emulation scenario, we classify all TCP connections into four
different network qualities, namely Good, Fair, Passable, and
Poor. In the second emulation scenario, we classify all TCP
connections into three different categories based on the time

Quality Rtx. Rate Time Gap Throughput RTT
Good p10 p90 p90 p10
Fair p25 p75 p75 p25
Passable p50 p50 p50 p50
Poor p75 p25 p25 p75

TABLE I: Emulation based on network quality.

gap between retransmission clusters, or how frequently a TCP
connection experiences loss, namely Good, Median, and Poor.

A. Classifying Connections Based on Network Quality

In Figures 4-7, we show distributions of 10th, 25th, 50th,
75th, and 90th percentile retransmission rate, time gap between
retransmission clusters, estimated throughput, and RTT, as
observed across all TCP connections in all 70 ms time slices.
Next, using these distributions, we label TCP connections
into the five different categories, as shown in Table I. For
example, when emulating a network with Good quality, we
select the 10th percentile (p10) retransmission rate distribution
from Figure 4, 10th percentile RTT (p10) distribution from
Figure 7, 90th percentile (p90) throughput distribution from
Figure 6, and 90th percentile (p90) distribution of time gap
between retransmission clusters from Figure 5. We then model
the network between the client and server by modifying the
above characteristics every 70 ms.

Note: Network bandwidth in cellular networks is attributed to
the base station and is not dependent on loss and RTT; how-
ever, network throughput is dependent on loss and RTT [56].
In our emulation, for lack of actual bandwidth information,
we use the observed throughput to model the bandwidth. The
collected TCP traces do not reveal the network bandwidth
and therefore one can only calculate the achieved throughput.
We acknowledge the fact that using observed throughput as
a substitute for bandwidth is not ideal. On the other hand,
modeling the bandwidth with a constant value for the entire
duration of the emulation is also not realistic. Therefore, in
order to model the bandwidth, we decide to use the observed
throughput as an approximate value for network bandwidth.

B. Classifying Connections based on Time Gap Between
Retransmission Clusters

When using this classification to categorize TCP connec-
tions, a Poor condition represents a network where subsequent
retransmission clusters are separated by less than 250 ms in the
median case. Next, a Median condition represents a network
where subsequent retransmission clusters occur every 250 ms
to 750 ms in the median case. And finally, a Good condition
represents a network where subsequent retransmission clusters
are separated by atleast 750 ms in the median case.



0 20 40 60 80 100

0.
0

0.
4

0.
8

Retransmission Rate (%)

C
D

F 
of

 T
C

P
 F

lo
w

s

Poor
Median
Good

Fig. 8: Distributions of retransmission
rates.

0 1 2 3 4 5

0.
0

0.
4

0.
8

Time Gap (s)

C
D

F 
of

 T
C

P
 F

lo
w

s

Poor
Median
Good

Fig. 9: Distributions of time gap between
retransmission clusters.

0.01 0.05 0.50 5.00

0.
0

0.
4

0.
8

Throughput (Mbps)

C
D

F 
of

 T
C

P
 F

lo
w

s

Poor
Median
Good

Fig. 10: Distributions of estimated
throughput.

0.00 0.10 0.20 0.300.
0

0.
4

0.
8

RTT (s)

C
D

F 
of

 T
C

P
 F

lo
w

s

Poor
Median
Good

Fig. 11: RTT Distributions ac-
cording to tshark.

0.0 0.1 0.2 0.3 0.4 0.5 0.60.
0

0.
4

0.
8

RTT (s)

C
D

F 
of

 T
C

P
 F

lo
w

s

Fig. 12: RTT Distributions
from the kernel TCP logs.

In Figures 8-10, we show distributions of retransmission
rate, time gap between retransmission clusters, and estimated
throughput, for different classifications of cellular network
conditions. For example, in Figure 9 we show that TCP
connections that belong to a Good, Median, and Poor network
conditions experience retransmission clusters after 1.15
seconds, 350 ms, and 165 ms respectively in the median case.

With respect to RTT distributions, from Figure 11 we ob-
serve that RTT for Poor networks is much lower than RTT for
Good conditions. We argue that this behavior is due to the fact
that when client receives out-of-order segments, TCP conges-
tion control on the client transmits TCP ACKs immediately to
accelerate recovery of lost segments [18]. Therefore, a receiver
on a Poor network (experiencing loss frequently) sends ACKs
as soon as it receives an out-of order packet. When such
ACKs are received by the server, tshark calculates the time
difference between the previous and the new ACK segments,
which results in exactly one RTT as ACKs are sent immediately
following a loss. In other words, if segment X is lost and server
keeps sending X+N segments, the client will send a DUP ACK
immediately for every N packets until X is recovered.

In the case of Good connections (experiencing loss rarely),
the TCP congestion control on the client sends ACKs for only
every other TCP segment. Moreover, the client waits up to
500 ms to accumulate all ACKs and then transmit an ACK for
the most recently in-order segment received [18]. Therefore,
when there is no loss for several RTTs, the time difference
between two received ACK segments is much larger than the
true RTT between the client and server. In other words, if
the client delays ACKs, the ACK RTT value calculated by
tshark will result in higher values than the values calculated
in the case of a Poor network. Note that even though recent
versions of Red Hat only delay ACKs for 40 ms, our argument,
related to why calculating RTTs based on the arrival times
of ACKs is inaccurate, still holds valid. Specifically, if the
TCP stack on the client delays the transmission of ACKs by
40 ms, the overall RTT observed by the server is more than
150% (110 ms) of the true RTT (70 ms in the median case).

Therefore, to extract accurate RTT distributions for different
network conditions, we extract over 15 million TCP log lines
recorded by the same CDN cluster over a week, where each
TCP log line represents an end-to-end connection between a
client and server’s port 443. We are interested to understand
whether or not latency is correlated to loss in cellular networks.
From each TCP log line we extract the minimum, average,
maximum RTT, and the time to establish TCP connection,
along with the total loss the connection experienced during its
lifetime. We observe that latency in cellular networks has an
extremely low correlation with the observed loss. Specifically,
for 15 million TCP connections, the correlation values between
the overall observed loss and minimum, maximum, average
RTT, and the time to establish TCP connection were only
0.004, 0.17, 0.24, and 0.05 respectively. This is likely due to
the fact that latency in cellular networks depends on multiple
factors such as, time spent in radio resource negotiations, time
to switch the device radio from idle to active, packet queuing
on routers in the core network. Therefore, given the low
correlation between latency and loss, from the TCP logs we
select the time to establish TCP connections as a standalone
distribution of RTT to use when emulating Good, Median,
and Poor network conditions. We show the RTT distribution
in Figure 12, which has the median RTT of 70 ms, same as
the one we used for slicing TCP connections.

C. Emulation in action

To emulate networks based on the two techniques described
in Sections VI-A and VI-B, we setup a network topology
using three machines with TCP CUBIC installed on Ubuntu
14.04. On the first machine, we configure a client that
runs Chromium Telemetry for loading webpages using the
Google Chrome browser [5]. On the second machine, we
configure an Apache Web server that supports h1 and h2
on different virtual hosts. Finally, on the third machine, we
configure a bridge to connect the client and the server. For
our experiments, the initial congestion window (ICW) on the
server is set to 10 segments of size 1460 bytes each. The
receive windows advertised by the client and server
during connection setup are set to 65 KB.

Depending on the emulation scenarios defined in
Sections VI-A and VI-B, we configure the bridge to use
TC NETEM commands to modify loss, time to subsequent
loss, RTT, and bandwidth every 70 ms. Note that we use
the retransmission rates discussed in Sections VI-A and
Section VI-B to model loss rates on the bridge. Similarly,
we use the time gap between retransmission clusters to model



1
2

5
10

Good Fair Passable Poor
Network Quality

P
ag

e 
Lo

ad
 T

im
e 

(s
) HTTP/1.1 (6 Connections)

HTTP/2 (1 Connection)

Fig. 13: PLTs of a webpage with
365 objects of size 1 KB.

5
10

20

Good Fair Passable Poor
Network Quality

P
ag

e 
Lo

ad
 T

im
e 

(s
) HTTP/1.1 (6 Connections)

HTTP/2 (1 Connection)

Fig. 14: PLTs of a webpage with
10 objects of size 435 KB each.

1
2

5
20

Good Fair Passable Poor
Network Quality

P
ag

e 
Lo

ad
 T

im
e 

(s
) HTTP/1.1 (6 Connections)

HTTP/2 (1 Connection)

Fig. 15: PLTs of webpages with 136 objects of
size 1-620 KB each.

the time when loss is introduced on the link between the
client and server. Finally, we use the estimated throughput to
model network bandwidth between the client and server, with
the reasoning described in notes of Section VI-A.

VII. COMPARING WEB PERFORMANCE OF H2 AND H1

In this section, we emulate the five network qualities de-
scribed in Section VI-A to compare PLTs over h2 and h1.
Since there is no standard definition of PLT, similarly to many
other studies [25], [29], [34], [41], [50], [53], [55], we estimate
the PLT as the time from when the user enters the URL in the
Web browser until the browser fires the JavaScript’s OnLoad
event. For measuring the PLT, we use the client to load
several webpages synthesized from HTTP Archive [15]. HTTP
Archive is a repository that maintains structures of many pop-
ular webpages designed for both mobile and desktop screens.

The webpages we synthesize represent many popular mobile
websites, ranging in the HTML document size, number of
embedded objects, and total webpage size. Note that we use
synthesized webpages instead of relying on real webpages,
because real webpages contain many third party objects that
could influence the overall PLT by up to 50% [32]. Further,
many third party objects are downloaded over h1, even though
the base page HTML could be downloaded over h2. As such,
third party objects on real webpages introduce interference
in PLT estimations. Therefore, we synthesize webpages that
do not include third party content and whose structure, object
size, and overall size represent popular webpages.

In our experiments, for each scenario, we load each page
200 times over h2 and 200 times over h1 using TLS. Note
that we use log y-axis on all figures for clarity.

The first webpage contains 365 objects of size 1 KB each,
the HTML document size of about 38 KB, and a total page
size of about 400 KB. This webpage represents 40% of the top
1000 mobile webpages that embed up to 400 objects, 25% of
the webpages with up to 40 KB HTML document size, 52%
of the webpages with a total webpage size of up to 1 MB, and
49% of the pages that transfer up to 400 KB of image data [15].
In Figure 13, we observe that PLTs over h2 are significantly
lower than PLTs over h1. This is because h1 establishes six
TCP connections with the server, which allows the server to
transfer only six objects in parallel. As each TCP connection
for h1 can only download one object at a time, the server sends
a total of 6 segments (6 KB) for the requested six objects,
before it waits for the next request. In other words, h1 can only
send 6 KB of data in each round trip, regardless of the conges-
tion window size on the server. On the other hand, unlike h1,

h2 multiplexes many objects on the single TCP connection
and can pack multiple objects in one TCP segment. Initially, a
single TCP connection for h2 allows the server to send 10 seg-
ments, that is 14.6 KB (14 objects for this site), with the num-
ber of segments that the server can send growing exponentially
with each round trip during the TCP slow start. Therefore, a
webpage with many small objects make an ideal case for h2
to reduce the number of round trips required, in comparison
to h1. In fact, since h1 requires more round trips to load this
webpage, it experiences more aggregate packet loss compared
to h2. Finally, when packet loss forces the server to drop its
TCP congestion window, the server in the case of h2 still
transmits more objects than in the case of h1. Therefore, we
observe that h2 outperforms h1 across all emulated scenarios.

The second webpage contains 10 large objects of size
435 KB each, the HTML document size of about 10 KB, and
total page size of about 4 MB. This webpage represents 40% of
the top 1000 mobile webpages that embed up to 400 objects,
38% of the webpages with up to 20 KB HTML document
size, and 6% of the webpages with a total webpage size
of about 4 MB [15]. From Figure 14, we observe that h1
outperforms h2 across all emulated network qualities. We
argue that since the object sizes in this page are much larger
than the object sizes in the previous page, the server in the
case of h1 uses all six TCP connections to send a total of
about 60 segments (87.6 KB) in the first round trip. Whereas,
in the case of h2 with one TCP connection, the server sends
only 10 segments (14.6 KB) of data in the first round trip. Note
that the number of segments that the server can send over each
connection doubles in every round trip. During TCP slow start,
the cumulative congestion window usable over h1 is six times
larger than the congestion window usable over h2. Further, as
the network quality gets worse when loss occurs, the conges-
tion window of the single connection over h2 does not grow
as much as it grows cumulatively for six connections in the
case of h1. For example, in Poor network quality we observe
that PLTs over h2 are significantly higher than PLTs over h1.
Therefore, a webpage with many large objects requires many
more round trips over h2 than it would require over h1.

The HTTP Archive data also suggests that many popular
webpages embed both small and large objects, however, their
counts differ significantly. Therefore, using the HTTP Archive
data we synthesize three more webpages, each containing 136
objects of size in the range of 1 KB to 620 KB, but with differ-
ent number of large objects. Specifically, the first webpage is
of size 2 MB, with three large objects (ranging from 30 KB to
620 KB in size) and 133 small objects (ranging from 20 B to



2 4 6 8 10 120.
0

0.
4

0.
8

Page Load Time (s)

C
D

F 
of

 R
eq

ue
st

s

h2
Sharding Type A
Sharding Type B
Sharding Type C

Fig. 16: h2 PLTs with different connection counts.

5 KB in size). This webpage is similar to the 16% of the top
1000 mobile webpages depicting many popular e-commerce,
news, and sports websites [14]. The second webpage is of
size 8 MB, with 12 large objects and 124 small objects. This
webpage is similar to many news, airlines, and blogging
websites, such as WikiHow, NYPost, Delta, and others [14].
The third webpage is of size 12 MB, with 18 large objects
and 118 small objects. This webpage is similar to many news,
online gaming, and streaming websites, such as Twitch.tv,
TomsHardware.com, and others [14]. The first, second, and
third pairs of boxplots in Figure 15 for each network quality
represent the distribution of PLTs for webpages of size 2 MB,
8 MB, and 12 MB, respectively. From the figure we observe
that for a 2 MB page, PLTs over h2 are lower than PLTs over
h1. This is because, similarly to Figure 13, server sends many
more objects over h2 in parallel, compared to only six objects
that the server sends in parallel over h1.

For the 8 MB page, although the page contains 12 large
objects, PLTs over h2 and h1 are comparable under Good and
Fair networks. This is because h2 gets benefits of multiplexing
small-sized objects, whereas, h1 suffers from HOL blocking
for both small and large-sized objects. However, as the
network quality get worse, PLTs over h2 become larger than
h1, because in the case of h2, downloading large objects over
single TCP connection suffers from small congestion window
due to frequent packet loss. In fact, a large object download
multiplexed with small objects prevents the small objects
from being downloaded in fewer round trips, especially when
packet loss occurs during large object downloads.

Finally, for the 12 MB page, the PLTs over h2 are always
higher than h1. This is because, the majority of the time is
spent loading the large objects. Therefore, when loss occurs,
the congestion window on the server in the case of h2 does
not grow as much and as fast as it grows cumulatively for six
connections in the case of h1 – affecting the PLTs over h2
when downloading large objects. Note that TCP’s slow start
is less important here as most of the PLT comes from the
congestion avoidance phase. To confirm whether the ICW im-
pacts PLTs for large webpages, we loaded a webpage 25 MB in
size (results not shown in the paper) and observed no statistical
significance in the difference between h2 and h1 PLTs.

When using the emulation scenarios described in
Section VI-B, we found that the results were qualitatively
similar to what we describe above. Therefore, due to
the page limit, we do not show or discuss those results
explicitly in the paper, however we briefly discuss them using
Figures 17, 18, 19, and 21 in Section VIII.

VIII. H2 PERFORMANCE WITH DOMAIN-SHARDING

From the previous section we observe that in the event of
packet loss, h2 degrades PLTs that contain both large and
small objects multiplexed over the same TCP connection.
In this section, we investigate whether PLTs over h2 can
be improved by isolating large and small object transfers
on different connections, such that their downloads do not
interfere, especially during loss. We speculate that isolating
large and small objects onto separate connections should
allow the server to transfer all small objects in fewer round
trips using h2’s multiplexing (similarly to Figure 13, and
as well as prevent the downloads of large objects from
blocking smaller objects in the event of loss (similarly to
Figure 15). However, unlike h1, modern Web browsers,
such as Google Chrome and Mozilla Firefox, establish only
one TCP connection for every h2-compatible domain name
on the webpage. To the best of our knowledge, there is
currently no provision in the browser source code to allow
establishment of multiple h2 connections, without modifying
the underlying h2 protocol [39], [43]. Besides increasing
the number of TCP connections used for h2 as we do in
this paper, one could also tune TCP specifically for h2, for
example, by increasing the ICW to 6 times the size of what
is recommended for h1, i.e. 60 segments. However, we will
discuss the performance of this approach later in the section.

We leverage domain-sharding by using multiple h2-
compatible domain names on webpages to enable the browser
to establish multiple h2 connections. Specifically, we setup
multiple h2-compatible domain names on the server to
shard webpage objects on these domain names. Note that
we associate each domain name with a unique certificate to
avoid connection coalescing used by modern Web browsers.

We then investigate how webpage objects should be sharded
such that the impact of packet loss on h2 is minimized.
For this investigation, we use the 8 MB page (with 12 large
objects and 124 small objects) used for Figure 15 and create
several versions of this page. Each version contains some
number of large objects isolated on different connections via
domain-sharding. Specifically, in Figure 16, Sharding Type A
refers to the page where we isolate only two large objects on
different connections, and all other objects on one connection
– total of three connections. Sharding Type B refers to the
page where we isolate all 12 large objects on different
connections and all small objects on one connection – total
of 13 connections. Sharding Type C refers to the page where
we isolate five large objects on different connections, and all
other objects on one connection – total of six connections.
The page loads labeled as h2 show PLTs using the original
8 MB page over single connection.

From Figure 16, we observe that PLTs for sharded
webpages are always lower than PLTs over h2 with one
connection. Moreover, Sharding Type B offers the lowest
PLTs among all sharded webpages, as this approach speeds up
transfers of small objects and prevents large objects to impact
small object downloads during loss. Therefore, isolating each
large download on a separate connection is a reasonable
strategy to reduce the PLT of h2-enabled webpages.



1
2

5
10

20

Good Median Poor
Network Condition

P
ag

e 
Lo

ad
 T

im
e 

(s
) h1 (6 Connections)

h2 (1 Connection)
h2 (2 Connections)
h2 (3 Connections)

Fig. 17: PLT distributions of a webpage
with 365 objects of size 1 KB each when
emulating based on TCP loss frequency.

5
10

50

Good Median Poor
Network Condition

P
ag

e 
Lo

ad
 T

im
e 

(s
) h1 (CWND 10, 6 Con)

h2 (CWND 10, 1 Con)
h2 (CWND 10, 2 Con)
h2 (CWND 10, 3 Con)

h2 (CWND 10, 6 Con)
h2 (CWND 10, 10 Con)
h2 (CWND 60, 1 Con)

Fig. 18: PLT distributions of a webpage
with 10 objects of size 435 KB each when
emulating based on TCP loss frequency.

2
5

10
20

Good Median Poor
Network Condition

P
ag

e 
Lo

ad
 T

im
e 

(s
) h1 (6 Connections)

h2 (1 Connection)
h2 (Sharded)

Fig. 19: PLT distributions for a 2 MB
page when emulating based on TCP loss
frequency.

1
2

5
10

Good Fair Passable Poor
Network Quality

P
ag

e 
Lo

ad
 T

im
e 

(s
) h1 (6 Connections)

h2 (1 Connection)
h2 (Sharded)

Fig. 20: PLTs of a 2 MB page when
emulating based on network quality.

10
20

50
20
0

Good Median Poor
Network Condition

P
ag

e 
Lo

ad
 T

im
e 

(s
) h1 (CWND 10, 6 Connections)

h2 (CWND 10, 1 Connection)
h2 (CWND 10, Sharded)
h2 (CWND 60, 1 Connection)

Fig. 21: PLTs of 8 MB page when emulat-
ing network based on TCP loss frequency.

5
10

20
50

Good Fair Passable Poor
Network Quality

P
ag

e 
Lo

ad
 T

im
e 

(s
) h1 (6 Connections)

h2 (1 Connection)
h2 (Sharded)

Fig. 22: PLTs of a 8 MB page when
emulating based on network quality.

A. Measuring Web performance with Sharded-h2

In Figure 17, we show the distributions of PLTs for a web-
page with 365 objects of size 1 KB each loaded over h2 with
one connection, h1 with six connections, and h2 with multiple
connections, using the emulation scenarios described in Sec-
tion VI-B. Similar to Figure 13, we observe that h2 with one
connection outperforms h1 with six connections. When shard-
ing half of the objects on a different h2-compatible domain
name, i.e. using two connections, we observe that in Good
conditions multiple h2 connections improve the PLTs by 12%
in the median case. Further, when sharding the page with three
h2-compatible domain names, i.e. using three connections, we
observe that the PLTs are either comparable or slightly higher
than PLTs over h2 with two connections. For webpages with
hundreds of small-sized objects, establishing multiple connec-
tions introduce additional latency of TCP and TLS handshakes
to the overall PLT – negating the benefits of domain-sharding.

Next, in Figure 18 we show PLT distributions of a webpage
with 10 large objects of size 435 KB each, using the emulation
scenarios described in Section VI-B. For this experiment, we
create multiple copies of the webpage and shard the resources
on different h2-compatible domain names, such that the
browser establishes two, three, six, and 10 h2 connections
depending upon how many domain names we use on the
webpage. Similarly to Figure 14, we observe that h2 with
one connection degrades PLT when compared to h1 with six
connections. We also observe that as the number of h2 connec-
tions increase, the PLTs decrease under all network conditions.
For example, under Good network conditions, the median
PLT over h1 with six connections is 8 seconds, h2 with one
connection is 15 seconds, and PLTs over h2 with two, three,
six, 10 connections are 12, 10, 9, and 8 seconds respectively.
Although, for such a webpage multiple h2 connections do not
result in PLTs lower than h1 but only comparable, we argue

that loading the webpage with sharding provides significantly
lower PLTs compared to webpages loaded over h2 with
one connection. We also measure the PLT over h2 when
using one connection with a ICW of 60 segments. Similar
to Figure 21, we observe that a high ICW does not improve
PLTs, because in lossy network conditions the rate at which
the congestion window re-grows after loss remains same as
the rate it grows when using one connection with ICW of 10.

In Figure 19, we show the PLT distribution of a 2 MB
webpage (same page as used in Figure 15) when loaded over
h2 with one connection, h1 with six connections, and h2 with
four connections (one for all small objects and the other three
for the three large objects). Similarly to Figure 15, in Figure 19
we observe that h2 outperforms h1 in terms of PLT. Moreover,
h2 with four connections achieves even faster PLTs, compared
to both h2 with one connection and h1 with six connections.

When emulating the network based on network quality as
shown in Figure 20, we observe that in the case of Good,
Fair, and Passable user experiences, sharded-h2 with four
connections achieves either 3% faster or comparable PLTs to
h2 with one connection. However, in the case of Poor user
experience, sharded-h2 offers 13% faster PLTs than h2 with
one connection.

Next, in Figure 21, we show PLT distributions of a
8 MB webpage, when loaded using the emulation scenarios
described in Section VI-B. For this experiment, we used
one domain name for all small objects and 12 different
domain names for the 12 large objects. From the figure we
observe that under Good network conditions, sharded-h2
offers 53% faster PLTs compared to h2 with one connection
and 10% faster PLT compared to h1 with six connections.
Even when the network conditions get worse, sharded-h2
outperforms h2 with one connection, however, in such
conditions sharded-h2 yields PLTs higher or comparable



to h1. Finally, and similarly to Figure 18, we observe that
PLTs over h2 with one connection using ICW of 60 are
comparable to PLTs using one connection with ICW of 10.

Our results for sharded-h2 for the 12 MB page in both
emulation setups are qualitatively similar to the ones shown
in Figures 21 and 22.
Note: Instead of using 12 h2-compatible hostnames, one could
use two h1 hostnames, for each of which browsers establish
six connections. Also, as browsers can not infer object sizes
from the base page HTML, our sharding technique enables
CPs to instruct browsers on how to fetch objects on different
connections, based on their sizes, for improved performance.

IX. CHALLENGES IN VALIDATING THE EMULATOR

As mentioned in Section III, RUM-based systems that
leverage browser provided APIs, such as the Navigation
Timing API [9], do not capture TCP metrics and thus
their estimation of PLT does not indicate whether the page
load experienced loss, and if so, how much [8]. While
CDN providers capture TCP metrics pertaining to the
recorded RUM data, both RUM and TCP-based metrics are
independently recorded at a very low sample rate of 1-5%.
Despite this fact, we sought to find page load sessions for
which both RUM and TCP-based metrics were recorded, but
because of the low sampling rate the common set was too
small to perform meaningful analysis [28].

Additionally, since about 32% of the TCP connections
experience loss, RUM-based PLT estimations include page
loads from sessions with and without loss. On the other
hand, we emulate only lossy network conditions. And so, the
comparison of PLT distributions across the two techniques
does not help validate our mobile emulator.

Next, our data collection technique relies on capturing TCP
traffic using TCPDump, which do not indicate the deployed
cellular network technology (2G/3G/LTE). Therefore, we can
not comment on the degree of fidelity to which our cellular
emulator can emulate radio access networks. However, we
speculate that our classification of captured TCP connections
into various network qualities could potentially reflect on the
different cellular technologies deployed by the carrier. For
example, the Good, Median, and Poor network conditions
could potentially represent the behavior of transport protocol
over LTE, 3G, and 2G configurations respectively.

In summary, the current Web performance measurement
techniques do not allow us to validate the emulator we
developed – motivating further research into cellular network
measurement and emulation. However, we believe that seeding
the emulator with real cellular network data enables us to emu-
late the dynamic characteristics of cellular networks, with suf-
ficient fidelity to reason about their impact on h2 performance.

X. DISCUSSION ON DOMAIN-SHARDING

Since our internal investigation of loss (not shown) indicates
little-to-no loss in wired access networks and since our study
only focuses on cellular network conditions, we recommend
the use of domain-sharding for webpages served to mobile
clients only. However, depending on how domain-sharding
is employed by Web developers and CDN providers, its use
may pose several potential implications on Web performance.

The use of domain-sharding incurs additional DNS lookups,
which may take several hundred milliseconds in cellular
networks [29], [30], [47], and can potentially increase the
overall PLT. However, several Web optimization techniques,
such as DNS Pre-Resolve [24] and DNS PiggyBacking [48],
can eliminate this additional lookup latency by providing hints
in the base page HTML, such that the Web browser resolves
the domain names much before the resolution is needed. Other
hints, such as TCP Pre-Connect, can also help browsers help
establish TCP connections much before they are needed [37].

Additional connections via domain-sharding also requires
additional computational resources for cryptographic
operations [44]. However, major CDN providers today use the
latest cipher suites, such as ChaCha20 and Poly1305, that offer
improved mobile Web performance, even when compared to
the unencrypted Web [45], [51]. Moreover, for many years
domain-sharding has been in use with h1, and therefore the
needed resources are already available to support even up to
six encrypted connections for each domain name. We argue
that using domain-sharding with h2 will require far fewer
secure connections, as unlike h1, a single h2 connection can
be used to download all small objects – only leaving a few
big objects to be downloaded on separate connections.

Guidelines to applying domain-sharding in practice: Many
CDN providers use several front end optimization (FEO)
techniques to generate the base page HTML based on the type
of client device (mobile vs desktop), client’s Web browser,
device screen size, client’s ISP, last-mile performance, among
many other factors [12]. As such, our proposed domain-
sharding can serve as another optimization technique that
FEO engines could incorporate to generate different versions
of webpages – pages with and without domain-sharding.
Similarly to the existing FEO implementations, the different
versions of the same webpage could be cached by CDN servers
and the sharded version could be served to cellular clients.

XI. CONCLUSIONS

h2 eliminates HOL blocking at the application layer
but retains it on the transport layer, which impacts Web
performance in lossy cellular network conditions. In this
work, we study the characteristics of TCP connections
observed for clients in a major US cellular carrier. We then
model various cellular network conditions to investigate h2
performance under lossy network conditions. Our results
indicate that h2 offers faster PLTs when webpages contain
small objects, however, h2 degrades PLTs when downloading
webpages with many large objects. Using domain-sharding,
we demonstrate that loading webpages over h2 with multiple
TCP connections reduces the impact of packet loss on PLT
– improving Web performance for mobile clients. Based on
our experimental evaluation of applying domain-sharding
on h2-enabled webpages, we recommend CPs and CDN
providers to apply h2-aware domain-sharding practices when
upgrading mobile Web content delivery to h2 protocol.

ACKNOWLEDGMENTS: We thank Javier Garza, Ajay
Kumar, and Kanika Shah for their help in setting experiments
and refining our research directions. We also thank NSF for
supporting us via grants CNS-1555591 and CNS-1527097.



REFERENCES

[1] Test a Website’s Performance. http://www.webpagetest.org/, 2008.
[2] Gomez Last-Mile Testbed. http://www.sqaforums.com/attachments/

601980-SQA Gomez DollarThrifty Webinar QandA.PDF, Nov. 2009.
[3] Akamai Mobitest. http://mobitest.akamai.com/m/index.cgi, 2012.
[4] 4GMark: Mobile Performance test. http://www.4gmark.com/, Nov. 2014.
[5] Chromium Telemetry. https://www.chromium.org/developers/telemetry/

run locally, Dec. 2014.
[6] Whats nPerf? How does it work? http://www.nperf.com/en/, Nov. 2014.
[7] 7 Tips for Faster HTTP/2 Performance. https://www.nginx.com/blog/7-

tips-for-faster-http2-performance/, Oct. 2015.
[8] Akamai Real User Monitoring. https://www.akamai.com/us/en/

resources/real-user-monitoring.jsp, Aug. 2015.
[9] Navigation Timing. http://w3c.github.io/navigation-timing/, Aug. 2015.

[10] RadioOpt. https://www.radioopt.com/, Mar. 2015.
[11] Akamai Accelerated Network Partner. https://www.akamai.com/us/

en/multimedia/documents/akamai/akamai-accelerated-network-partner-
aanp-faq.pdf, Jun. 2016.

[12] Akamai Image Manager. https://www.akamai.com/us/en/products/web-
performance/image-manager.jsp, Jun. 2016.

[13] Dynatrace Synthetic Monitoring. http://www.keynote.com/solutions/
monitoring/dynatrace-synthetic-monitoring, 2016.

[14] HTTP Archive: Downloads. http://mobile.httparchive.org/downloads.
php, Apr. 2016.

[15] HTTP Archive: Interesting stats. http://mobile.httparchive.org/
interesting.php?a=All&l=Apr%201%202016&s=Top1000, Apr. 2016.

[16] Netem. https://wiki.linuxfoundation.org/networking/netem, Jul. 2016.
[17] Tshark. https://www.wireshark.org/docs/man-pages/tshark.html, 2016.
[18] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control, RFC

2581, Apr. 1999.
[19] M. Belshe, R. Peon, and E. M. Thomson. Hypertext Transfer Protocol

Version 2 (HTTP/2), RFC 7540, May 2015.
[20] Z. S. Bischof, F. E. Bustamante, and R. Stanojevic. The Utility Argument

– Making a Case for Broadband SLAs. Mar. 2017.
[21] E. Bocchi, L. De Cicco, M. Mellia, and D. Rossi. The Web, the Users,

and the MOS: Influence of HTTP/2 on User Experience. 2017.
[22] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.

BBR: Congestion-Based Congestion Control. ACM Queue, Sept. 2016.
[23] H. de Saxc, I. Oprescu, and Y. Chen. Is HTTP/2 really faster than

HTTP/1.1? In IEEE INFOCOM WKSHPS, April 2015.
[24] G. Developers. Pre-Resolve DNS. https://developers.google.com/speed/

pagespeed/service/PreResolveDns, Apr. 2015.
[25] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan. Towards

a SPDY’ier Mobile Web? In ACM CoNEXT, Dec. 2013.
[26] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim,

E. Katz-Bassett, and R. Govindan. An Internet-Wide Analysis of Traffic
Policing. In ACM SIGCOMM, Aug. 2016.

[27] S. Floyd, A. Arcia, D. Ros, and J. Iyengar. Adding Acknowledgement
Congestion Control to TCP, RFC 5690, Feb. 2010.

[28] U. Goel. Web Performance in Cellular Networks. http:
//www.cs.montana.edu/∼utkarsh.goel/docs/Goel Akamai Intern
Showcase 2016.pdf, Jul. 2016.

[29] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. A Case for
Faster Mobile Web in Cellular IPv6 Networks. In MobiCom, Oct. 2016.

[30] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. Detecting
Cellular Middle-boxes using Passive Measurement Techniques. In ACM
PAM, Mar. 2016.

[31] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. HTTP/2
Performance in Cellular Networks. In ACM MobiCom, Oct. 2016.

[32] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. Measuring
What is Not Ours: A Tale of 3rd Party Performance. In ACM PAM,
Mar. 2017.

[33] U. Goel, M. P. Wittie, K. C. Claffy, and A. Le. Survey of End-to-
End Mobile Network Measurement Testbeds, Tools, and Services. IEEE
Communications Surveys Tutorials, 18(1), Firstquarter 2016.

[34] U. Goel, M. P. Wittie, and M. Steiner. Faster Web through Client-
Assisted CDN Server Selection. In IEEE Conference on Computer
Communication and Networks (ICCCN), Aug 2015.

[35] I. Grigorik. High Performance Browser Networking. O’Reilly Media,
Inc., Sept. 2013.

[36] I. Grigorik. Making the Web Faster with HTTP 2.0. ACM Queue,
11(10), Oct. 2013.

[37] I. Grigorik. Eliminating Roundtrips with Preconnect. https://www.igvita.
com/2015/08/17/eliminating-roundtrips-with-preconnect/, Aug. 2015.

[38] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-friendly High-speed
TCP Variant. SIGOPS Operating System Review, 42(5), July 2008.

[39] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. QUIC: A UDP-Based
Secure and Reliable Transport for HTTP/2, Draft, Jan. 2016.

[40] R. Hodson. HTTP/2 For Web Developers. https://blog.cloudflare.com/
http-2-for-web-developers/, Dec. 2015.

[41] Y. Liu, Y. Ma, X. Liu, and G. Huang. Can HTTP/2 Really Help Web
Performance on Smartphones? In IEEE SCC, Jun. 2016.

[42] S. Ludin and J. Garza. Learning HTTP/2: An Introduction to the Next
Generation Web. O’Reilly Media, Inc., Dec. 2016.

[43] X. Mi, F. Qian, and X. Wang. SMig: Stream Migration Extension for
HTTP/2. In ACM CoNEXT, Dec. 2016.

[44] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste. The Cost of the ”S” in
HTTPS. In ACM CoNEXT, Dec. 2014.

[45] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF Protocols,
RFC 7539, May 2015.

[46] G. Polvara. Mind the Gap When Upgrading to HTTP/2.
http://nerds.fundbase.com/2015/08/20/mind-the-gap-when-upgrading-
to-http-2/, Aug. 2015.

[47] J. P. Rula and F. E. Bustamante. Behind the Curtain: Cellular DNS and
Content Replica Selection. In ACM IMC, Nov. 2014.

[48] H. Shang and C. E. Wills. Piggybacking Related Domain Names to
Improve DNS Performance. Computer Network, 50(11), Aug. 2006.

[49] M. Steiner. H2 Performance Analysis in Real World Cellular
Networks. https://www.ietf.org/proceedings/97/slides/slides-97-maprg-
h2-performance-analysis-in-real-world-cellular-networks-moritz-
steiner-01.pdf, Jul. 2016.

[50] M. Steiner and R. Gao. What slows you down? Your network or your
device? CoRR, abs/1603.02293, 2016.

[51] N. Sullivan. Do the ChaCha: Better Mobile Performance with
Cryptography. https://blog.cloudflare.com/do-the-chacha-better-mobile-
performance-with-cryptography/, Feb. 2015.

[52] M. Thompson. Network Link Conditioner. http://nshipster.com/network-
link-conditioner/, Sept. 2013.

[53] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, Alessandro, Finamore,
and K. Papagiannaki. Is The Web HTTP/2 Yet? In PAM, Mar. 2016.

[54] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
Demystifying Page Load Performance with WProf. In USENIX NSDI,
Apr., 2013.

[55] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
How Speedy is SPDY? In USENIX NSDI, Apr. 2014.

[56] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. In
USENIX NSDI, Apr. 2013.

[57] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber, and Z. M. Mao. Cellular
Data Network Infrastructure Characterization and Implication on Mobile
Content Placement. In ACM SIGMETRICS, 2011.

[58] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and R. Govin-
dan. Investigating Transparent Web Proxies in Cellular Networks. In
ACM PAM, Mar. 2015.

[59] K. Zarifis, T. Flach, S. Nori, D. Choffnes, R. Govindan, E. Katz-Bassett,
Z. M. Mao, and M. Welsh. Diagnosing Path Inflation of Mobile Client

Traffic. In ACM PAM, 2014.


