
R
E

P
O

R
T

W
H

IT
E

 P
A

P
E

R
Defend Against Bots
from the Beginning
Best practices for developers to create resilient web and mobile apps

akamai.com | 2

You’re a developer, responsible for your
company’s mobile and web apps. It’s noon
on a Friday and you get a call from Security
Operations. There’s a bot attack happening
against a critical API endpoint, threatening the
confidentiality and availability of your system,
and SecOps cannot stop it with the tools they
have. Is your weekend ruined? Is this even
your problem? Unless you anticipated this
scenario from the start, the answers to both
questions could very well be yes.

Threat actors using automated scripts —
bots — to abuse web applications are a big
problem, but they can be a much bigger
problem if your application isn’t developed
with them in mind. Failing to account for bots
in your design decisions could mean frequent
and significant revenue-impacting events, like
outages and periods of poor user experience,
along with the sleepless nights, missed
personal time, and the additional expenses
involved in all-hands-on-deck incidents.

There are proactive steps you can take to
avoid such instabilities. We recommend these
10 guidelines to help developers create apps
that are less likely to be harmed by bots and
to create anti-bot security measures that are
more likely to work.

TL;DR

1.	 Cache everything, everywhere you can

2.	 Document “sensitive operations,” like
logins, and the workflows that call them

3.	 Identify and document the clients that
interact with your app

4.	 Make it easy to identify and update your
mobile apps

5.	 Make it easy to identify when a sensitive
operation takes place

6.	 Stay in the same cookie space

7.	 Eliminate sensitive operations that
happen prior to authentication

8.	 Reduce the number of sensitive
operations in general

9.	 Use normal web browsers, outside your
app, for authentication

10.	 Make it easy to distinguish failed logins
from successful logins

akamai.com | 1

akamai.com | 3

The 10 guidelines

1. Improve caching
As part of a comprehensive strategy to mitigate the effects of bots — while also improving
the performance and offload of traffic in general — organizations should increase caching
wherever possible. Anything that can be cached should be cached, and it should be cached
anywhere it can be cached. Making use of the ability of your content delivery network (CDN)
to cache as much as possible will eliminate most bot problems that involve distributed denial
of service (DDoS), as those cached requests will never hit your app server.

With Akamai, you can go a step further: Static resources like fonts, images, and Cascading
Style Sheet (CSS) files can be served from our cloud storage service, Akamai NetStorage.
Serving content from NetStorage ensures origin processing and bandwidth offload even
when an object isn’t cached — and the best part is that you probably have a large allocation of
NetStorage space just by being an Akamai customer. This service is especially important for
websites for which caching is difficult due to a large number of assets; for example, a digital
commerce site with hundreds of thousands of product pages, producing a tremendous
amount of “long-tail content” that never gets cached (or, if cached, never gets pulled from
the cache). By putting these assets on NetStorage, you effectively introduce another layer of
caching and completely offload that content from your origin.

Even dynamic, private content (constantly changing data unique to individual users) can
probably be cached for at least a little while in the client, even if it can’t be cached for long
periods at the CDN layer. That reduces the number of requests that legitimate clients make
and helps reveal bots that come in at higher volumes.

akamai.com | 2

https://www.akamai.com/products/netstorage

akamai.com | 4

2. Identify and document
“sensitive operations” that
are particularly ripe for
automated abuse
Being mindful of what you’re designing is
critical to ensuring that your organization takes
appropriate precautions and hardens defenses
during the build phase, so you’ll be prepared
for any trouble that arises in production. The
following common operations on a site are likely
to be subject to automated abuse and should be
considered sensitive operations.

•	 Logins

•	 Account creation/verification

•	 Password resets

•	 Real-time inventory or price lookups

•	 Store locators

•	 Search

•	 Contact forms

•	 File uploads

•	 Authorization, validation, or balance
check operations for payment cards,
financial accounts, or customer
loyalty reward programs

•	 Any other legitimate operation that
could cause significant origin load
or incur other costs

Sensitive operations

akamai.com | 3

akamai.com | 5

Every sensitive operation should to be inventoried, and their workflows need to be fully
documented, including the method and URL(s) of the page(s) with which the user interacts
prior to making the operation, how the operation is invoked (such as through a form
submission or AJAX), and how frequently the operation is called during a typical user
session.

As workflows become scattered, it becomes increasingly difficult to inventory sensitive
operations and to document the workflows that invoke them. For example, imagine a login
operation that could potentially be invoked from dozens of different domains to dozens of
different URLs. If all logins were always and only ever made against a particular URL, it would
be much easier to document this and, later, to target it for protection. IT teams should do
that wherever possible. With one caveat: There are instances when it’s a good idea to have
different login workflows for different clients, as discussed in guideline 6.

If many different URLs must be used (as in the case of different brands or country TLDs
that each have their own domain name but are all using the same backend application or
framework), at least be consistent from one domain to the next so that you can say
things like “Users will always GET /LoginForm before they POST to /Login” regardless
of domain name.

Additionally, it’s also critically important to keep in mind users who come in from “deep links”
like search engine results or their own bookmarks when documenting these workflows.
Generally speaking, sensitive operations should not be able to be directly invoked by a
browser when simply opening a link (see guideline 7 for more details).

akamai.com | 4

https://developer.mozilla.org/en-US/docs/Glossary/AJAX

akamai.com | 6

3. Identify and document the
clients using your app
Web browsers, whether on desktop or mobile,
are virtually identical in terms of their ability to
interpret HTML, CSS, and JavaScript — as well
as in their need to request those resources in
each new session. This is not so for other clients,
like native mobile applications (NMAs) or most
automated tools like systems monitors, partners
making API calls, or even malicious bots.
Because all this is incredibly important to how
bot management works, the known legitimate
clients of the above-noted sensitive operations
need to be documented also, so that SecOps can
better identify and mitigate automated abuse.

For each of your sensitive operations, document
whether requests for them will come from web
browsers, nonbrowser clients, or both. Examples
of these nonbrowser clients include NMAs, as
well as kiosks, account aggregators (common
in financial services), business-to-business
communications with partners and resellers, or
anything else that is not an actual web browser
being used by a human. Also document how
any nonbrowser clients are identified, such
as a specific User-Agent string or a particular
IP range. If IT professionals know that there
are going to be legitimate automated or other
nonbrowser clients making requests for sensitive
operations, but have no ability to reliably identify
those clients before they make their requests,
that’s a red flag. Those professionals need to
reconsider how they’re approaching the objective
of their design, as it may be inherently insecure.

akamai.com | 5

akamai.com | 7

Examples of good User-Agent
strings for an NMA

Examples of bad User-Agent
strings for an NMA

MyApp/Android v1.2.3.4
OkHttp 2.0: Generic user agent for
Android/Java HTTP clients

MyApp/iOS v5.6.7.8

MyApp/Version.A.B7 Android/
iOS: No way to distinguish platform;
version string characters make it more
complicated to do programmatic
analysis of traffic logs

4. Make it easy to identify, validate, and update your clients —
especially mobile apps
You should have a consistent way of identifying requests that come from clients that you
control — this is particularly important for any NMA that you develop. Every request that a
certain client makes should have the same User-Agent string, and that string should contain
information about the platform (iOS, Android) and app version (using numbers; e.g., v7.3.2).
Further, that User-Agent pattern should be consistent among different platforms and among
different versions. Although having a consistent, identifiable User-Agent string isn’t itself a
guard against bot operators who can easily spoof those strings, having this will help SecOps
identify aberrant traffic patterns of clients that claim to be a particular version running on a
particular platform.

Additionally, include some way of forcing an update on these clients, whether via a simple
request to update or by breaking the app until the update happens. The client should
check on startup to see the current available version (or at least the minimum version
you want interacting with your APIs) and compare that with its own version to determine
how to proceed. This functionality is critical in situations where new app deployments
need to happen as a result of evolving security requirements, such as the addition of
Akamai Bot Manager.

Finally, you need to be sure you’re making use of the tools that Google and Apple have built
into their operating systems and app stores that help you validate genuine app installs.
This is done via Android’s Play Integrity API, which also requires you to identify sensitive
operations, and Apple DeviceCheck.

akamai.com | 6

https://www.akamai.com/products/bot-manager
https://developer.android.com/google/play/integrity
https://developer.apple.com/documentation/devicecheck

akamai.com | 8

5. Create clear, distinct operation identifiers
For some applications, different operations involve different URLs — for example, an
unauthenticated operation to fetch information about the service’s status could happen at
/UptimeStatus while an authenticated operation to check on a bank account balance could
happen at /AccountBalance. For other applications, the same URL can be used for both
operations, along with many or all other operations involved in the application, and the origin-
side application will distinguish between different operations based on some other identifier
in the request, such as a header, query, or body parameter. This is common for APIs used
with both in-browser single-page applications (SPAs) as well as NMAs.

However your app identifies the operation, whether by URL or not, use one operation
identifier for a sensitive operation being performed by web browsers and a different
operation identifier for that same sensitive operation being performed by NMAs and other
nonbrowser clients. For example, if the operation identifier is a URL, a browser login could be
done at /BrowserLogin, while an NMA login could be done at /MobileLogin.

This doesn’t mean making a different URL for every different client, of which there could be
hundreds or even thousands. It’s generally enough to have just one URL for web browsers
and another URL for anything else — but, if you do want to go the extra mile, you can make
one identifier for web browsers, one for clients that you control (such as NMAs that you
develop), and a third URL for clients that you don’t control (such as partner API clients or
authorized third-party NMAs). Again, this allows for SecOps to better identify and mitigate
automated abuse while reducing the risk of blocking legitimate clients and requests, and
really only needs to be done for sensitive operations, not your whole site.

akamai.com | 7

https://en.wikipedia.org/wiki/Single-page_application

akamai.com | 9

Additionally, organizations should also have different identifiers for authentication using
human-known credentials (username and password) versus authentication using other
types of credential artifacts (like OAuth’s automatic reauthentication operations using
refresh tokens).

In any case, the identifier should be as obvious and simple as possible so that sensitive
operations can be efficiently targeted for protection. It won’t be efficient for SecOps to have
to look at two different request parameters, or a parameter that is nested 10 levels deep in a
JSON array, to tell if a request is a login or not.

Finally, don’t make it easy for bots to perform this operation without the correct identifier.
Depending on your requirements, you’ll want to avoid (or at least be aware of) situations
such as:

Your app treats requests to “/login” and “/%20login”
the same
This could break any number of tools aside from bot
management, like the logging of more detailed information
about sensitive operations that key off the URL path. Part of
your DevSecOps practice should be automated functional
tests that attempt slightly malformed requests to see how
the app responds.

Requests to “/search” are parsed by your app as if they were
made to “/login” because of some request parameter value
This is an even more challenging version of the previous
example that should be tested for because it can really
obfuscate what a client is doing.

A mix of sensitive and nonsensitive operations are made
in a single request
This is okay as long as it’s still easy to identify that a request
contains at least one sensitive operation, or as long as this
mix of operations happens after using login as a choke point
(more on this in guideline 7)

akamai.com | 8

akamai.com | 10

6. Keep your workflows in
the same cookie space
where possible
A critical security and privacy feature of
all modern browsers prevents them from
sending cookies between two different apex
domains. Many bot mitigation solutions rely
on identifying human/bot behavior as the
client makes requests throughout the user
journey. This session is usually tracked by
a cookie and changing the cookie space
during the workflow will complicate how
that session information is tracked or how
protections are deployed.

Special efforts may need to be taken in
situations in which a third-party service
must be directly used as part of the
workflow, as in the case of a payment
processing service where users submit
payment information directly to that
service’s URL, or a cloud authentication
service where users are redirected to a
login before being returned to the main site
(such as with login.microsoftonline.com).
Sometimes, those third-party services will
take responsibility for protecting themselves
against automated abuse, but often they will
hold you responsible by charging fees or by
threatening to stop doing business with you
if you don’t protect against bots that come
in through workflows on your site. If you
have the responsibility to stop bots in these
situations, you need to proxy the connections
back to the service so that you can stay
within your cookie space and set up security
controls at that proxy layer. This proxying is
best done through the use of a CDN; Akamai
uses this exact technique to protect many of
its customers.

akamai.com | 9

akamai.com | 11

7. Reduce or eliminate sensitive operations that happen
before login or other choke points
It would be foolish for a bank to store its money in the lobby rather than its vault, and it would
be even more foolish for them to store the money on the sidewalk outside the bank — this is
inherently insecure and no number of cameras or guards would make the money as secure
as a locked bank vault. To get your cash from the bank, you must first walk through the lobby
doors without looking like you’re there to rob the place and, once you’ve done that, you then
identify yourself at the counter, usually with a debit card and PIN. If anything suspicious
happens in that time, the bank can use its defenses as appropriate — but once you’ve gone
through that process you can make any number of withdrawals or transfers from your
accounts as you’d like.

This is how organizations need to think about sensitive operations — before a user is allowed
to make a request for a sensitive operation, they should ideally be forced to authenticate (or
at least have to click through a page, type in a search term, or otherwise interact with the site
somehow). That process is usually sufficient for anti-bot defenses to pick up on the behavior
of the user who is interacting with the client and make a decision about whether to allow the
sensitive operation to happen. In other words, as the user interacts with a login form, before
the login credentials are actually sent back to origin to be validated, anti-bot detections can
make a decision about whether to allow that credential validation operation to happen at all.
By turning one sensitive operation into a choke point, behind which you move other sensitive
operations, you greatly reduce your attack surface and SecOps can focus their attention on
defending just that choke point operation.

akamai.com | 10

akamai.com | 12

Login operations are particularly good choke
points, both because you can layer in additional
security (namely multi-factor authentication,
which itself is an excellent tool against both
bot-automated and manual credential stuffing
attacks), and because you can enforce limits
on sensitive operations per account. If only a
logged-in user can perform a particular sensitive
operation, you can set up a quota or rate-limiting
scheme that prevents a single logged-in user
from slamming your origin with such requests,
and SecOps can review/disable accounts that
make an unusually large number of requests for
any reason.

Business requirements may complicate this
choke point scenario. Take, for instance, a site
that shows real-time inventory and dynamic
pricing on its product pages: If the business
wants this information displayed immediately
before any user interaction on the site (such as
for users coming in directly from a search engine
or bookmark, rather than by clicking or searching
from your home page), this is an inherently
insecure design and you should reconsider
your approach to satisfying the business
requirements, or else work with your business
partners to modify the requirements. In this case,
rather than show real-time data immediately
prior to login, perhaps you show near-real-time
cacheable data until users log in, or at least
interact with the site more, after which they can
receive the real-time data. Putting the real goods
behind login may be totally out of your hands,
as businesses tend to push for increasingly
frictionless user experiences. In these cases,
you must emphasize to the businesses that they
are creating extremely alluring incentives for
attackers, and they must take more strategic
action, beyond mere technological controls, to
reign in those dangerous incentives.

akamai.com | 11

akamai.com | 13

8. Reduce the frequency of sensitive operations
If a real user only needs to perform a sensitive operation once per user session, it becomes
easier to identify bots that come in at higher volumes. This is typical for logins: Users
usually only need to enter a username and password once per session, but a bot operator
may be going through lists of thousands of credentials. Even when a user must enter
their credentials repeatedly, say in the case of a mistyped password, there will still be user
interaction between each login operation.

As an example, imagine a search page that doesn’t require authentication and that allows
you to set the number of results returned — to 50, 100, or 200 results. An inferior way of
performing this search would be for the client to make a request for each block of 50
results; that is, if the user wants to see 200 results on the page, the app will quickly make
four successive XHR requests to get the data it needs to build the results page, without any
user interaction between each request. A superior way would be for the client to make a
single request with the desired number of results specified within that request. This way is
better because it would require some user interaction between each operation (e.g., typing in
search terms or clicking “next” to see a new page of results), allowing more time and data for
anti-bot detections to better determine if a client is being operated by a human even though
there could be many search operations performed during a single session of a real human.

Ultimately, your goal should be to require some user interaction
before a sensitive operation is performed — the more interaction,
the better, to give more data to anti-bot defenses.

akamai.com | 12

https://developer.mozilla.org/en-US/docs/Glossary/XHR_(XMLHttpRequest)

akamai.com | 14

To be clear, the more time and user
interactions that happen between sensitive
operations, the easier it will be to distinguish
the bots from the humans — having minimal
user input between sensitive operations
may not be enough. For example, imagine a
search page that brings up results with each
keystroke: In an attempt to autocomplete,
the page will helpfully make query after
query with the most limited of user input.
Although there is some user interaction
between each sensitive operation (search
query), it will be extremely minimal and this
makes it more difficult for SecOps when
they try to implement security controls. The
design should be such that autocomplete
from user input is a different function
than actually querying for results, just as
Google does on their search (you don’t see
them showing a results page after each
keystroke). This way, you can focus on
making the autocomplete function more
efficient and user-friendly while keeping
separate, and reducing the number of, the
costlier results query operations. This isn’t
to say that the autocomplete function can’t
also be targeted by bots if there is some
valuable data in there or if they just want to
overwhelm your system, but being able to
distinguish between the autocomplete and
the search operations will nonetheless help
SecOps better defend each one.

akamai.com | 13

akamai.com | 15

9. Authenticate on a separate in-browser page
This is particularly important for clients that run on dedicated streaming devices.
You’ve likely experienced this many times yourself: When you want to log in to a
streaming service, you’re prompted to get on your phone, visit a URL, and enter a given
code on your TV. Although it is more convenient to enter your streaming service password
on your phone using a screen keyboard or saved credentials, there is more to that process
than most people realize. By forcing users through a login page on their phone, security
operators have the chance to gather additional user interaction data — like touchscreen,
compass, and gyro events — and make better determinations about whether the device is
being operated by a real human being.

Along with clients running on dedicated streaming appliances, it is also good practice to
break out the authentication pages for NMAs and SPAs, forcing users to authenticate on
a web page before passing an auth token back to the app itself. Doing this allows for more
flexibility when it comes to deploying code to protect login, and avoids the need to do
larger deployments of the app’s entire codebase.

Note: To implement this practice with an NMA, it
may be better to launch a distinct web browser
application instance, rather than use built-in browser
frameworks (OkHttp on Android or WKWebView on
iOS), since such frameworks may lack (or disable
by default) certain functionality needed by security
operators when implementing anti-bot protections.
This is not a hard-and-fast rule, but using browser
frameworks can introduce additional complexity that
could be avoided by launching a browser. Business
requirements, however, may dictate that loss of
focus for your application is unacceptable, in which
case browser frameworks should still be used. If
you must use a browser framework, make sure that
it completely enables the running of JavaScript
and fetches all resources to render the login page
from the web server at runtime, rather than render
resources packaged with the app. Again, the idea
here is to improve the flexibility of developers and
security operators so they can implement future
security controls specific to the login without having
to do a larger deployment.

akamai.com | 14

https://square.github.io/okhttp/
https://developer.apple.com/documentation/webkit/wkwebview

akamai.com | 16

10. Be mindful of failed login responses and account validation
This is important both to help SecOps identify potential attacks and to avoid leaking
information that can be useful to attackers. The response for a failed login that happens as
a result of an incorrect password should be identical in its headers and its body to a failed
login that happens as a result of an incorrect/nonexistent username — an ambiguous failure
message should cover all cases. For scenarios in which accounts are locked as a result of too
many failed login attempts, only users who present valid credentials should be informed that
a lockout has happened.

It is also best practice to have at least one clear, consistent, documented difference between
the response to a failed login and the response to a successful login. The most obvious way of
indicating this is to use an HTTP response code, such as 401 (Unauthorized) for a failed login
and 302 (Redirect) for a successful login. Response headers can also be used to differentiate
between successful and failed logins, but care should be taken to not bury the difference.
Different ranges of Content-Length or a particular cookie, for example, do not make it easy
for SecOps to understand when there has been an uptick in failed logins just by looking at
HTTP logs. If the only consistent difference between a failed and a successful login response
is something within the body of the response, it will be nearly impossible for SecOps to
differentiate them. This should be avoided entirely.

For account creation and password reset operations, care should also be taken not to reveal
whether an account exists at all. Like logins and password resets, design these operations so
that responses to failed requests for existing accounts are identical to requests for nonexistent
accounts, at least until the client has somehow authenticated themselves, such as by clicking
an automatically generated link emailed to the user.

akamai.com | 15

akamai.com | 17

Akamai protects your customer experience, workforce, systems, and data by helping to embed security into everything you create — anywhere you
build it and everywhere you deliver it. Our platform’s visibility into global threats helps us adapt and evolve your security posture — to enable Zero
Trust, stop ransomware, secure apps and APIs, or fight off DDoS attacks — giving you the confidence to continually innovate, expand, and transform
what’s possible. Learn more about Akamai’s cloud computing, security, and content delivery solutions at akamai.com and akamai.com/blog, or follow
Akamai Technologies on X, formerly known as Twitter, and LinkedIn. Published 11/23.

Conclusion

Doing everything we recommend in this paper will not make your
app completely impervious to bot attacks, and you should still work
with your security team to proactively implement a dedicated bot
management solution. But, by following these guidelines, you’ll be
able to enjoy your weekend, while SecOps deals with another blip
on their radar that’s not your problem — thanks to your proactive,
holistic approach to bot-proofing your apps.

Contact Akamai for a deeper dive into which solutions would benefit your organization the most.

akamai.com | 16

Further reading

Understanding Your
Credential Stuffing
Attack Surface

Configuring Akamai Bot
Manager to detect and
stop adversarial bots

Top 10 Considerations
for Bot Management

Credits
Editorial and writing
Jacob Lovell

Review and subject matter contribution/
marketing and publishing
Danny Harris
Mike Elissen
David Sénécal
Carley Thornell

http://www.akamai.com
http://akamai.com/blog
https://twitter.com/Akamai
https://www.linkedin.com/company/akamai-technologies/
https://www.akamai.com/why-akamai/contact-us
https://www.akamai.com/resources/white-paper/understanding-your-credential-stuffing-attack-surface
https://www.akamai.com/resources/white-paper/understanding-your-credential-stuffing-attack-surface
https://www.akamai.com/resources/white-paper/understanding-your-credential-stuffing-attack-surface
https://techdocs.akamai.com/cloud-security/docs/handle-adversarial-bots
https://techdocs.akamai.com/cloud-security/docs/handle-adversarial-bots
https://techdocs.akamai.com/cloud-security/docs/handle-adversarial-bots
https://www.akamai.com/site/en/documents/ebook/top-10-considerations-for-bot-management-ebook.pdf
https://www.akamai.com/site/en/documents/ebook/top-10-considerations-for-bot-management-ebook.pdf

