
akamai.com | 1

Akamai’s
Approach
to Resilience

W
H

IT
E

 P
A

P
E

R

Updated August 4, 2022

akamai.com | 2

Addendum: Power resiliency in Europe 3

Introduction 4

Design principles for resilience 4

 Assume everything will break 4

 Fault tolerance 5

 Redundancy 5

 Distributed algorithms and
 local decisioning 6

 Component level resilience 6

 Fault isolation 7

 Automation and self-healing 7

	 Graceful	degradation,	traffic	control	
 and scalability 8

 Change safety 9

 Layering of safeties 9

 Visibility 10

 Security model 10

Operational resilience 11

Conclusion 12

Table of Contents

akamai.com | 3

Addendum

Power resiliency in Europe

With the news of potential energy shortages across
Europe, our customers have been expressing their
concerns on how these shortages might affect
Akamai service availability and sustainability goals
in the region. Since the start of the crisis in Ukraine,
Akamai has been monitoring the situation and its
cascading effects on life and business, specifically
technology infrastructure, in neighboring regions.
While Akamai is not immune to the pronounced risk of
energy shortages in Europe, one of Akamai’s greatest
values to its customers is the resilient, distributed
architecture on which it is built. We have recently
released the “Akamai’s Approach to Resilience”
white paper. Below is an addendum exploring the
topic further, with a special focus on our customers’
concerns about the European Energy Crisis: energy
availability and sustainability.

Akamai’s platform utilizes a highly redundant and
distributed collection of data centers it has at its
disposal, a very diverse set of network connectivity
providers, and power sources across the globe.
Through these relationships, Akamai is continually
making strategic decisions on where to deploy its
servers and connectivity infrastructure to best meet
the needs of its customers. A foundational part of
this strategy is to deploy adequate redundancy
across a diverse set of resources and geographies
such that Akamai can continue to provide best-in-
class reliability, performance, and scale.

In Europe, Akamai is present in more than 500 data
centers connected to over 370 networks. In Germany
alone, Akamai is present in 54 data centers across
20 cities. The largest data centers from which
Akamai procures services use renewable energy as

their primary power source. Akamai’s sustainability
team conducts regular surveys with our data center
vendors to measure alignment with Akamai’s overall
sustainability goals. In light of recent events in
Europe, Akamai has also been working with our data
center vendors and partners to understand how
they procure energy from utilities and what actions
they’ve taken to protect their customers from market
volatility. We are confident in the measures our data
center vendors and partners are making to ensure
continuity of service for Akamai, and we continue to
coordinate with them.

On the software side, to best utilize Akamai’s
highly distributed infrastructure, Akamai’s
platform continuously monitors the availability
and performance of servers, network links, and
data centers at large. Using this information, the
Akamai platform automatically routes traffic around
problems — including areas that are without power,
congested network links, and down servers. A
vital design principle of Akamai’s platform is the
expectation that servers, data centers, and network
links will go down. Based on this principle, Akamai
deploys servers to numerous data centers in local
geographies to allow for redundancy, allowing
Akamai’s software to automatically route traffic to
network links and servers that are best available.
All of this activity is continuously monitored by
Akamai staff, who then forecast and plan new server
deployments to meet the evolving needs of our
customers across various geographies and to keep
enhancing our platform redundancy and resiliency.

Akamai is closely monitoring the energy crisis in
Europe and is actively coordinating with its data
center partners throughout the region to ensure that
Akamai maintains the reliability and performance our
customers expect from us.

akamai.com | 4

Introduction

At Akamai, we recognize the essential role our
platform and products play in our customers’ ability to
deliver exceptional digital experiences. For more than
20 years, Akamai has met the demands of the world’s
largest sites for digital commerce, streaming media,
online banking, and more. Ensuring the resilience of
the world’s most highly distributed global network
of servers for delivering and securing content on
the internet, therefore, is a priority at the core of our
commitment to Akamai customers and internet users.

In the context of Akamai’s products and services,
resilience means designing our systems to continue
operating despite unforeseen problems in a complex
world where anything can go wrong at any time.

Akamai’s far-reaching platform is deployed in
approximately 4,200 points of presence (PoPs) in
1,400 networks, located in 135 countries around the
world. The platform comprises more than 350,000
servers, each running sophisticated algorithms that
allow them to act together as one massive, highly
reliable system. Akamai uses distributed systems
principles and high-availability software techniques
to build this reliable service on top of the unreliable
building blocks the internet provides.

It’s important to note that the internet is a best-effort
technology. Information to be transmitted is divided
into packets, addressed to a distant machine across
the internet, and then sent out on the local wire with
the hope it will arrive at its intended destination. There
is absolutely no guarantee that it will. Connections
may be overloaded, servers and routers may crash,
links can be severed, or routing paths may fluctuate.
How can anyone both meet the demands for 100%

uptime, which is necessary for supporting real-time
communications and compute for use cases like
retail purchases, financial services transactions, or
machine-to-machine communications in the face of
this chaos? A down server or a broken network link
is not an excuse for an interruption in service — and
neither are the inevitable operator errors or bugs
that may occur. All of these are conditions Akamai’s
platform must detect and account for automatically
to provide a seamless experience in spite of any
underlying problems.

This paper highlights a number of our most
important design principles for achieving resilience.
While standard techniques like quality assurance
best practices, peer review of changes, and
vulnerability management are vital elements of a
resilient system, they are not covered here. Instead,
we focus on the specialized technologies and
techniques Akamai employs for resiliency on a highly
distributed global platform.

Design principles
for resilience

Assume everything will break

The most important step in the design of a highly
resilient platform is to begin with a clear recognition
that anything that can go wrong, will go wrong. After
more than 20 years of operating our global platform,
we’ve seen it all. Hardware fails; network links get
cut; data centers catch fire; data centers don’t catch
fire, but the fire suppression system triggers anyway.
Software will have bugs, both simple and complex.
Human operators will make mistakes.

akamai.com | 5

Each failure point for a system may have a variety of
different failure modes. If a server has a hardware
failure of its disks, CPU, memory, networking card, or
other components, will it become unreachable? Will it
stay online operating at a reduced capacity? Perhaps
it will stay online and emit faulty data — a potential
catastrophe for downstream systems that rely on
that data in a critical manner. Maybe the server will
be unreachable initially but later come back online
emitting stale data — another potential catastrophe.

The impact of all these failure modes must be
considered within the context of a distributed system.
If a local node detects it has become isolated from
the rest of the world, it should perhaps take itself
out of service so it does not provide stale data.
But if the detected isolation is due to a widespread
fault in a communications subsystem, every node
may be isolated, and it is imperative for all nodes
to continue operating as well as possible under the
circumstances.

To build our highly reliable systems, Akamai carefully
studies all failure modes, and designs resilient
technologies that will continue operating seamlessly
when those failures occur. We constantly review the
resilience posture of our systems in the face of these
failure modes. In complex systems, dependencies
change over time and the designs to address them
will need regular updates.

Fault tolerance

The bread and butter of resilience is designing systems
to continue operating when they experience some kind
of error condition or fault. This principle, fault tolerance,
can be achieved through a variety of techniques, each
appropriate to a different situation. What follows
are some of the most critical design techniques we
employ to create fault-tolerant systems, illustrated with
examples from Akamai’s platform.

Redundancy

Redundancy is perhaps the most common technique
for providing fault tolerance. It is applied pervasively
throughout Akamai’s systems, although in a variety of
ways to address different circumstances and an array
of potential failure modes.

For example, we use one type of hot-failover
redundancy to address a particular set of failure
modes related to individual servers in a local cluster.
Within the cluster, servers monitor one another
to check if their neighbors are alive and correctly
providing service. If a server fails, another server in the
same cluster will immediately take over the IP address
of the failed server to continue providing service at
that address. Akamai’s deployments are built as racks
of machines coordinated by software algorithms to act
together as one large, highly reliable content delivery,
security, and compute node. If any of the individual
servers fail, the system adapts automatically.

We use another kind of redundancy designed to
ensure the reliability of our more centralized systems.
Note that at Akamai, when we refer to a system as
being “centralized” we are often still talking about
being deployed in a dozen or more locations around
the globe; it is centralized only in comparison with the
very highly distributed edge nodes. Some of these
centralized systems must operate in a mode where
a single node is the decision-maker, or “leader.” It is
critical that the leader be chosen:

• With care to be the node with the best possible
operating posture, having the best set of input
information available, the best connections to peer
systems, and the least likelihood of encountering a
failure mode

• Automatically and rapidly, so that if the leader fails,
another node will take over service quickly

akamai.com | 6

• In a stable fashion, so leadership doesn’t bounce
from node to node unnecessarily

• With the understanding that network disruptions
may create a situation in which that a set of potential
leaders don’t know if they are isolated from another
set of potential leaders (and are thus unaware if
they may independently elect two leaders operating
simultaneously)

Akamai uses specialized distributed systems
algorithms designed to ensure redundant versions
of critical systems can be deployed globally, yet act
immediately to take over service in the event of faults.

Distributed algorithms and local decisioning

An effective resilience technique we employ at
Akamai is performing work that is relevant to a
distributed node at, or close to, that node. This
increases the likelihood of any node’s ability to
continue providing service in the event of degraded
connectivity or capacity.

As an example of this, Akamai’s traffic load balancing
system operates at two levels:

• The global load balancing system determines which
traffic (and how much of it) to assign to each local
cluster

• The local load balancing system determines how to
spread the traffic among the machines in the cluster
to which it is assigned

While it would be possible to perform both functions
centrally, we choose to run the local load balancing
systems within the local clusters themselves. This
allows the cluster to act more as an independent
unit that can manage itself in the face of various
failure modes, while offloading centralized systems
by distributing the workload. Note that while the

load balancing software in the local cluster does
communicate with other parts of the global platform,
it is designed to continue operating in the event these
communications fail.

Component-level resilience

The techniques for fault tolerance discussed thus
far are system-level techniques, but fault tolerance is
equally, if not more, critical at the component level.
When a piece of software fails, what steps can it take
to minimize the impact of that failure?

Software can fail in a variety of modes, but let’s take
the example of a process crash, which could be
either unexpected or part of a component’s strategy
to halt when detecting an internal inconsistency.
One effective tactic we employ is to ensure that
when a process does crash, it can restart as quickly
as possible. This may seem straightforward, but a
number of factors can slow down a component’s
restart. For example, if the system is configured
to allow core dumps and the process is using a
very significant amount of memory, it may take
considerable time to write the core dump to disk,
which could block a new version of the process from
starting. Completely disabling core dumps carries its
own risks for debugging unexpected problems, so
another approach must be taken.

More commonly, it is possible for a component
to take an unusually long time to restart if it has
accumulated a large amount of configuration it must
process before offering its service. Measuring and
managing restart time to ensure it remains fast is one
of many effective strategies for the component-level
resilience that Akamai practices.

Another common but highly impactful failure mode
is when a component produces a faulty output that
is sent to another component. This may be the
result of a logic bug, a hardware failure, or some

akamai.com | 7

other unanticipated fault. One technique we use to
mitigate this problem is deploying an output checker,
which reads the component’s proposed output
and runs a set of sanity checks before allowing it
to be published. This includes looking for internal
incoherence or inconsistency in the meaningfulness
of the output, such as data that doesn’t make sense
within the context of other systems components (e.g.,
nonexistent ID numbers), or unexpectedly large values
or magnitudes of change in the output. In some
cases, we use similar techniques implemented as
input checkers on downstream receiving components.

Finally, a component that crashes can employ clever
resilience strategies if it believes it has crashed
due to input from some other part of the system.
For example, let’s say a component receives a new
configuration, crashes, then restarts and crashes
again within a short time span. Given the recent
arrival of a new configuration and the two crashes
shortly thereafter, there’s good reason to suspect
the configuration is the cause of the crash. If the
system dynamics of the component allow for it, that
component can automatically revert to using the
previous version of the configuration. We design the
component’s behavior to exit this mode when a new,
good configuration is available.

Fault isolation

When all else fails, a critical backstop for achieving
fault tolerance is fault isolation. In the event of some
unaccounted-for failures, it’s important to locally
contain the impact of the problem. Akamai uses
a sophisticated version of fault isolation on our
platform to meet the dual requirements of scaling
automatically to serve high-demand, high-traffic
events while also protecting the broader platform
from unexpected problems with that traffic.

As an example, imagine that a site on our platform
with moderate traffic trips some type of error

condition. Perhaps something specific to that site’s
configuration combined with a bug in our edge server
software only exhibits itself when the site publishes
a new piece of content. Despite the techniques we
use for component-level resilience, for the purposes
of this example, let’s assume all other safeties
have failed, and the edge server crashes and does
not recover automatically. In our normal mode of
operation, another server in the local cluster would
immediately take over for the failed server, as
described earlier. However, in this circumstance, that
may be problematic. The second server may also
crash because of the same bug. The traffic would
continue to shift to one new server after another, a
cascading failure eventually crashing all servers in the
local cluster.

One simple solution to this problem would be to
enforce a hard limit that no single site can use more
than a small fraction of a given cluster. But that would
severely limit the ability to automatically scale to use
all the resources necessary to deliver content to end
users from the best possible node. Instead, Akamai
employs a more sophisticated resilience design that
detects if unexpected server crashes are attributed to
a particular site’s traffic. Under normal conditions, we
allow a site to scale to use all necessary resources,
but if error conditions are detected, scaling is halted
and the damage is limited in scope.

Automation and self-healing

A key principle that comes into play in Akamai’s
resilience strategy is a design philosophy of
automation and self-healing. With a network of
over 350,000 servers, it will never be possible for
operations staff to react to problems manually fast
enough. It is imperative, therefore, that problems are
detected and mitigated automatically. Automated
mitigation is the only way to scale, and it is the only
way to react quickly enough.

akamai.com | 8

Automation and self-healing principles are pervasive
at all layers of Akamai’s technology stack. As
previously mentioned, machines in a cluster
automatically take over for other machines in the
event of a failure. In fact, a “down edge server” alert is
the lowest priority alert in our system. We know it will
happen often, but it’s not a high priority because the
system will accommodate it seamlessly — repairing
the machine can happen on a longer time scale.

At the same time, if an entire cluster of servers or even
an entire data center goes offline, our system reroutes
traffic quickly and automatically to the next best
data center, without any operator intervention. This is
discussed in greater detail in the following section.

Graceful degradation, traffic control,
and scalability

Because anything that can go wrong, will go wrong,
it is imperative to design for failure modes that allow
for a graceful degradation in service. It’s often the
case that, with extra forethought and design, various
failure modes can be made to allow for “good enough”
service to continue instead of complete unavailability.

This is a design principle Akamai employs in many
different contexts. One example is our approach to
traffic mapping, by which we mean the assignment
of end users to clusters around the world. Our traffic
mapping system also clearly illustrates resilience
principles related to control mechanisms and
scalability, so all three will be discussed here.

Akamai’s traffic mapping system is designed to direct
each new end-user request for content to one of
our global clusters, based on real-time performance

measurements of internet traffic conditions among
users and clusters. This is designed to ensure that
users get the best possible performance. The cluster
physically closest to a user is not always the one with
the best performance when the internet is suffering
from certain kinds of connectivity problems.

But this performance-based mapping mechanism
also plays an important role in the resilience principle
of graceful degradation. If a cluster goes offline or is
overloaded, we can direct end users to the next-best-
performing cluster, likely in the very same city as the
first one. If even more capacity is required — such
as during a very high-demand, live sports event —
we can continue step-by-step, employing additional
nearby resources and continuing to give very good
performance when optimal is not possible. Our traffic
mapping system’s DNS responses have 20-second
time to lives (TTLs are the settings that tell the client’s
DNS resolver how long to cache an answer before
requesting a new one). This gives us the ability to
react quickly, whether when redirecting users in the
event of an increased demand in traffic, or in response
to a data center that unexpectedly goes offline.1

There are two additional benefits to the fine-grained
control and load feedback that Akamai’s traffic
mapping provides. First, it allows us to make very
efficient use of resources. Servers, clusters, and
network links can be driven to use nearly their full
capacity because we have the capability to direct each
next request to another resource if one becomes fully
loaded. Second, by addressing clusters directly, we
have a great deal of control over the direction of traffic
— far more than through the use of technologies like
Anycast, which have occasionally been the cause of
severe disruptions to services.

1 Note that because extra DNS lookups can impact performance, an additional component of our system is designed to ensure that users are
making their low-TTL DNS lookups from nameserver software that is also mapped to be very close to the end users, with a selection of servers
made available for both performance and resilience.

akamai.com | 9

Change safety

As a matter of practice, many significant failure
modes exhibit themselves as the result of a change
that carries unintended consequences. A classic
example is pushing a configuration update to a
software component that triggers a bug in the
software or causes the software to crash. Given the
pace of innovation on the internet, it’s not feasible to
ensure all software will be free of bugs. So, how do
we achieve resilience beyond the component-level
resiliencies previously discussed?

One of the most effective methods Akamai employs is
performing staged rollouts of new configurations, with
automated testing between stages. An automated
configuration rollout and safety system can help
manage this. The parameters of staged rollouts will
vary based on the risk profile of the configuration
channel in question, but let’s talk through one
example:

• When a new configuration is ready to deploy, it is
first sent to a nonproduction testing system. If the
software on that system crashes or experiences an
error, the automated deployment system halts rollout
and alerts an operator.

• If the nonproduction testing passes, the
configuration may then be sent to a small number of
production servers. The selected servers should be
relevant to the configuration changes being made,
but small enough in scope so that a fault will be
of limited impact to the overall correct functioning
of the service. If automated testing detects the
target servers exhibiting faults or not operating
correctly, the automated deployment system halts
the deployment of this configuration and alerts an
operator to the situation.

• If the target servers in the previous stages continue
to look healthy, rollout can continue in a staged
manner until the configuration is fully deployed with
a pace and staging appropriate for the needs of the
configuration and components in question.

For some manual processes, such as actions
taken by operations staff, we use a “what if” tool
that determines if an action will have unsafe
consequences, alert the operator to this fact, and
potentially require an override to continue

Layering of safeties

While the principles of resilience described throughout
this document are all valuable independently, their
effectiveness increases exponentially when they
are combined. The power of layered safety is so
significant that it is itself a resilience principle.

Talking through the simple example of deploying a
configuration that would trigger a bad bug in software
illustrates this clearly:

• When the configuration is pushed that would
trigger the bug, it is first automatically tested on a
nonproduction machine. If the bug exhibits there,
rollout halts and the failure is averted.

• If the live testing does not exhibit the problem, the
configuration is rolled out in stages to the production
network, where additional testing will halt rollout if
the bug presents itself.

• If the bug still has not triggered by the time the
configuration has reached global deployment
(perhaps because the bug is dependent on a
transient condition), the defensive posture of the
component’s resilience kicks in. The software may
crash, but if it restarts quickly it still has the chance
to provide good service.

akamai.com | 10

• If the bug trips a second time not long after the
first, and the component’s system dynamics can
support it, the component decides two crashes in
a row may be the result of a bad configuration and
automatically reverts to using a previous version of
the configuration.

• At the same time, if the transient condition
necessary to trip the bug was based on a request
to a particular site, the fault isolation system will
prevent the traffic mapping system from spreading
this site’s traffic to too many servers.

• That’s important for keeping the “good” traffic
working correctly, but also gives the traffic mapping
system the opportunity to send some of the good
traffic to additional resources if local capacity is
degraded due to the failures.

Visibility

Having good visibility into systems status would
seem an obvious operational requirement for resilient
systems. Good telemetry allows operators to detect
problematic conditions and repair them before they
cause an interruption in service. However, there are
subtleties in how to provide the right kind of visibility
for when things go wrong. Standard techniques for
logging warnings or errors may alert an operator to
a problem, but they are often woefully insufficient
for answering the next question about the scope or
nature of the problem, or how to diagnose it.

Take, for example, a server that sends a warning
message about approaching overload when it is at
85% capacity utilization of some resource. If half
the machines on the network log that message,
it suggests there’s a looming problem, but then
what? The operator only has more questions the log
messages can’t answer. Is the rest of the network
nearly at 85% load or far below it? Does the majority
of the load on those servers have something in

common, like a single customer, traffic type, software
version, or configuration? Is there anything else
unusual happening on those servers, but not others?
Unfortunately, the rigidity of logging can’t help us
answer these questions.

For this reason, Akamai built a telemetry system
that gives far greater flexibility, especially in the face
of complex and unexpected problems. With this
system, the software developer of a component can
make arbitrary underlying data about the component
available via an API. Operators can query for any of
this information remotely as needed. What’s more,
the interface to this system is SQL, with the telemetry
system itself aggregating together data from servers
and components across the platform, on demand.
The result is that an operator can write an ad-hoc SQL
statement as if against an enormous database of
systems information, but that’s actually the live status
of the network.

It’s hard to overstate the power of such a system.
Imagine what would happen in the scenario described
above in which a component reports high load.
Instead of being hard-coded to log at 85%, the
component simply makes its current load percentage
available via telemetry. The alerting system queries
the entire network for the component’s current load
and triggers an alert that too many servers are at
85% load. But now the operator can easily answer
all the other questions above. By issuing new
queries, they can determine the load on the other
components, understand the distribution of load
among the ones that did alert, and combine tables
with other information such as customer traffic levels,
configuration settings, software version, and more.

Security model

The focus of this document has largely been on
the design of techniques for resilience in the event
of faults rather than on the software design itself.

akamai.com | 11

However, the security design of software and systems
carries an outsized importance in overall systems
resilience and so deserves attention.

A number of relatively common security practices
are highly detrimental to systems resilience. One
example is overreliance on IP access control lists
(ACLs) as a primary control for access or systems
communications. While an IP ACL is a worthwhile
addition to other security measures, it is imperative
that it not be the only control. Strong cryptographic
methods, employed both for encryption and
authentication, must be the first line of defense
across all communications channels.

Another common security practice that carries
unnecessary risk is overly broad access privileges.
Take, for example, an operator who requires
access to a global network of servers to perform
maintenance tasks or to debug problems. At the
beginning of the worker’s shift, there’s no way to
know in advance which servers the operator will
need access to, so in many environments the
operator is simply given access to all systems.
This, unfortunately, presents risks to resilience and
safety. If a single operator’s key can access the
entire network simultaneously, it’s an attack vector
for taking the service offline. It’s even a risk from a
nonmalicious perspective; A bug in a tool used by an
operator may now accidentally perform a damaging
action on the entire network of servers.

To help mitigate this risk, Akamai uses an access
broker system for maintenance and debugging
access to servers. While an operator may need
access to any server from a given collection, there
is no reason during their shift that they will require
access to all servers. Instead of giving direct access
to servers, the operator authenticates to the brokerage
system, which then mediates access to the server. In
this way, an operator may be given access to a limited
fraction of the servers on the network, and other
controls may be imposed as well.

Operational resilience

Although we strive for as much automation and self-
healing as possible, it is necessary to have human
operators managing the problems that software
and systems can’t. The goal of the resilience design
principles discussed is to allow the system to
continue operating seamlessly during the time a
human operator needs to take corrective action on an
underlying problem.

Akamai has a number of staffed operations centers
located around the globe. Operators receive alerts
(usually written as SQL against the telemetry system
described previously), with a configured severity and
linked procedure as an entry point into a workflow
to resolve the issue. Systems have a clear list of
contacts for escalations when standard procedures
can’t resolve a problem.

Operations staff are also responsible for installing new
software on the network. This, as with configuration
deployment, is performed in stages, although striped
differently across the network. Prior to each install
phase, we employ techniques to divert traffic away
from the machines to be installed. Post-install
monitoring assesses the health and performance
of parts of the network running the new version of
software and compares it with the previous version.

Finally, while the resilience design principles and
operational practices described in this document are
highly effective at providing a reliable service, Akamai
also has a robust incident management framework
in place for when things go wrong. Solid incident
management is itself a critical resilience technique,
as it can truly make the difference between an outage
that lasts minutes and one that lasts an hour.

akamai.com | 12

Conclusion

Building a highly reliable service on top of the
internet’s “best effort” infrastructure is a complex
challenge — one that Akamai has embraced for
more than 20 years. In this paper, we’ve explained
a number of the most important design principles
for providing a highly resilient service on Akamai’s
globally distributed platform. Although the principles
are described here at a high level, Akamai’s team
of experts in systems architecture, distributed

algorithms, software design, security technologies,
and operational practices focus on the details to
ensure the robustness of our technologies and their
application throughout our platform.

Through ongoing innovation and investment, Akamai is
continually improving and refining our resilience strategy
and tactics to keep pace with changes in technology,
content and traffic dynamics, and our customers’
evolving needs. We are committed to providing the
highly reliable platform and products that empower our
customers to deliver digital experiences that delight their
customers and drive their business growth.

Akamai powers and protects life online. Leading companies worldwide choose Akamai to build, deliver, and secure their digital experiences
— helping billions of people live, work, and play every day. With the world’s most distributed compute platform — from cloud to edge — we
make it easy for customers to develop and run applications, while we keep experiences closer to users and threats farther away. Learn
more about Akamai’s security, compute, and delivery solutions at akamai.com and akamai.com/blog, or follow Akamai Technologies on
Twitter and LinkedIn. Published 08/22.

http://akamai.com
http://akamai.com/blog

