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Addendum

Power resiliency in Europe

With the news of potential energy shortages across 
Europe, our customers have been expressing their 
concerns on how these shortages might affect 
Akamai service availability and sustainability goals 
in the region. Since the start of the crisis in Ukraine, 
Akamai has been monitoring the situation and its 
cascading effects on life and business, specifically 
technology infrastructure, in neighboring regions. 
While Akamai is not immune to the pronounced risk of 
energy shortages in Europe, one of Akamai’s greatest 
values to its customers is the resilient, distributed 
architecture on which it is built. We have recently 
released the “Akamai’s Approach to Resilience” 
white paper. Below is an addendum exploring the 
topic further, with a special focus on our customers’ 
concerns about the European Energy Crisis: energy 
availability and sustainability.

Akamai’s platform utilizes a highly redundant and 
distributed collection of data centers it has at its 
disposal, a very diverse set of network connectivity 
providers, and power sources across the globe. 
Through these relationships, Akamai is continually 
making strategic decisions on where to deploy its 
servers and connectivity infrastructure to best meet 
the needs of its customers. A foundational part of  
this strategy is to deploy adequate redundancy  
across a diverse set of resources and geographies 
such that Akamai can continue to provide best-in-
class reliability, performance, and scale.

In Europe, Akamai is present in more than 500 data 
centers connected to over 370 networks. In Germany 
alone, Akamai is present in 54 data centers across 
20 cities. The largest data centers from which 
Akamai procures services use renewable energy as 

their primary power source. Akamai’s sustainability 
team conducts regular surveys with our data center 
vendors to measure alignment with Akamai’s overall 
sustainability goals. In light of recent events in 
Europe, Akamai has also been working with our data 
center vendors and partners to understand how 
they procure energy from utilities and what actions 
they’ve taken to protect their customers from market 
volatility. We are confident in the measures our data 
center vendors and partners are making to ensure 
continuity of service for Akamai, and we continue to 
coordinate with them.

On the software side, to best utilize Akamai’s 
highly distributed infrastructure, Akamai’s 
platform continuously monitors the availability 
and performance of servers, network links, and 
data centers at large. Using this information, the 
Akamai platform automatically routes traffic around 
problems — including areas that are without power, 
congested network links, and down servers. A 
vital design principle of Akamai’s platform is the 
expectation that servers, data centers, and network 
links will go down. Based on this principle, Akamai 
deploys servers to numerous data centers in local 
geographies to allow for redundancy, allowing 
Akamai’s software to automatically route traffic to 
network links and servers that are best available. 
All of this activity is continuously monitored by 
Akamai staff, who then forecast and plan new server 
deployments to meet the evolving needs of our 
customers across various geographies and to keep 
enhancing our platform redundancy and resiliency.

Akamai is closely monitoring the energy crisis in 
Europe and is actively coordinating with its data 
center partners throughout the region to ensure that 
Akamai maintains the reliability and performance our 
customers expect from us. 
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Introduction

At Akamai, we recognize the essential role our 
platform and products play in our customers’ ability to 
deliver exceptional digital experiences. For more than 
20 years, Akamai has met the demands of the world’s 
largest sites for digital commerce, streaming media, 
online banking, and more. Ensuring the resilience of 
the world’s most highly distributed global network 
of servers for delivering and securing content on 
the internet, therefore, is a priority at the core of our 
commitment to Akamai customers and internet users.

In the context of Akamai’s products and services, 
resilience means designing our systems to continue 
operating despite unforeseen problems in a complex 
world where anything can go wrong at any time.

Akamai’s far-reaching platform is deployed in 
approximately 4,200 points of presence (PoPs) in 
1,400 networks, located in 135 countries around the 
world. The platform comprises more than 350,000 
servers, each running sophisticated algorithms that 
allow them to act together as one massive, highly 
reliable system. Akamai uses distributed systems 
principles and high-availability software techniques 
to build this reliable service on top of the unreliable 
building blocks the internet provides.

It’s important to note that the internet is a best-effort 
technology. Information to be transmitted is divided 
into packets, addressed to a distant machine across 
the internet, and then sent out on the local wire with 
the hope it will arrive at its intended destination. There 
is absolutely no guarantee that it will. Connections 
may be overloaded, servers and routers may crash, 
links can be severed, or routing paths may fluctuate. 
How can anyone both meet the demands for 100% 

uptime, which is necessary for supporting real-time 
communications and compute for use cases like 
retail purchases, financial services transactions, or 
machine-to-machine communications in the face of 
this chaos? A down server or a broken network link 
is not an excuse for an interruption in service — and 
neither are the inevitable operator errors or bugs 
that may occur. All of these are conditions Akamai’s 
platform must detect and account for automatically 
to provide a seamless experience in spite of any 
underlying problems.

This paper highlights a number of our most  
important design principles for achieving resilience. 
While standard techniques like quality assurance  
best practices, peer review of changes, and 
vulnerability management are vital elements of a 
resilient system, they are not covered here. Instead, 
we focus on the specialized technologies and 
techniques Akamai employs for resiliency on a highly 
distributed global platform.

Design principles  
for resilience

Assume everything will break

The most important step in the design of a highly 
resilient platform is to begin with a clear recognition 
that anything that can go wrong, will go wrong. After 
more than 20 years of operating our global platform, 
we’ve seen it all. Hardware fails; network links get 
cut; data centers catch fire; data centers don’t catch 
fire, but the fire suppression system triggers anyway. 
Software will have bugs, both simple and complex. 
Human operators will make mistakes. 
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Each failure point for a system may have a variety of 
different failure modes. If a server has a hardware 
failure of its disks, CPU, memory, networking card, or 
other components, will it become unreachable? Will it 
stay online operating at a reduced capacity? Perhaps 
it will stay online and emit faulty data — a potential 
catastrophe for downstream systems that rely on 
that data in a critical manner. Maybe the server will 
be unreachable initially but later come back online 
emitting stale data — another potential catastrophe.

The impact of all these failure modes must be 
considered within the context of a distributed system. 
If a local node detects it has become isolated from 
the rest of the world, it should perhaps take itself 
out of service so it does not provide stale data. 
But if the detected isolation is due to a widespread 
fault in a communications subsystem, every node 
may be isolated, and it is imperative for all nodes 
to continue operating as well as possible under the 
circumstances.

To build our highly reliable systems, Akamai carefully 
studies all failure modes, and designs resilient 
technologies that will continue operating seamlessly 
when those failures occur. We constantly review the 
resilience posture of our systems in the face of these 
failure modes. In complex systems, dependencies 
change over time and the designs to address them 
will need regular updates.

Fault tolerance

The bread and butter of resilience is designing systems 
to continue operating when they experience some kind 
of error condition or fault. This principle, fault tolerance, 
can be achieved through a variety of techniques, each 
appropriate to a different situation. What follows 
are some of the most critical design techniques we 
employ to create fault-tolerant systems, illustrated with 
examples from Akamai’s platform.

Redundancy

Redundancy is perhaps the most common technique 
for providing fault tolerance. It is applied pervasively 
throughout Akamai’s systems, although in a variety of 
ways to address different circumstances and an array 
of potential failure modes.

For example, we use one type of hot-failover 
redundancy to address a particular set of failure 
modes related to individual servers in a local cluster. 
Within the cluster, servers monitor one another 
to check if their neighbors are alive and correctly 
providing service. If a server fails, another server in the 
same cluster will immediately take over the IP address 
of the failed server to continue providing service at 
that address. Akamai’s deployments are built as racks 
of machines coordinated by software algorithms to act 
together as one large, highly reliable content delivery, 
security, and compute node. If any of the individual 
servers fail, the system adapts automatically.

We use another kind of redundancy designed to 
ensure the reliability of our more centralized systems. 
Note that at Akamai, when we refer to a system as 
being “centralized” we are often still talking about 
being deployed in a dozen or more locations around 
the globe; it is centralized only in comparison with the 
very highly distributed edge nodes. Some of these 
centralized systems must operate in a mode where 
a single node is the decision-maker, or “leader.” It is 
critical that the leader be chosen:

• With care to be the node with the best possible 
operating posture, having the best set of input 
information available, the best connections to peer 
systems, and the least likelihood of encountering a 
failure mode

• Automatically and rapidly, so that if the leader fails, 
another node will take over service quickly
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• In a stable fashion, so leadership doesn’t bounce 
from node to node unnecessarily

• With the understanding that network disruptions 
may create a situation in which that a set of potential 
leaders don’t know if they are isolated from another 
set of potential leaders (and are thus unaware if 
they may independently elect two leaders operating 
simultaneously)

Akamai uses specialized distributed systems 
algorithms designed to ensure redundant versions 
of critical systems can be deployed globally, yet act 
immediately to take over service in the event of faults.

Distributed algorithms and local decisioning

An effective resilience technique we employ at 
Akamai is performing work that is relevant to a 
distributed node at, or close to, that node. This 
increases the likelihood of any node’s ability to 
continue providing service in the event of degraded 
connectivity or capacity.

As an example of this, Akamai’s traffic load balancing 
system operates at two levels:

• The global load balancing system determines which 
traffic (and how much of it) to assign to each local 
cluster

• The local load balancing system determines how to 
spread the traffic among the machines in the cluster 
to which it is assigned

While it would be possible to perform both functions 
centrally, we choose to run the local load balancing 
systems within the local clusters themselves. This 
allows the cluster to act more as an independent 
unit that can manage itself in the face of various 
failure modes, while offloading centralized systems 
by distributing the workload. Note that while the 

load balancing software in the local cluster does 
communicate with other parts of the global platform, 
it is designed to continue operating in the event these 
communications fail.  

Component-level resilience

The techniques for fault tolerance discussed thus 
far are system-level techniques, but fault tolerance is 
equally, if not more, critical at the component level. 
When a piece of software fails, what steps can it take 
to minimize the impact of that failure?

Software can fail in a variety of modes, but let’s take 
the example of a process crash, which could be 
either unexpected or part of a component’s strategy 
to halt when detecting an internal inconsistency. 
One effective tactic we employ is to ensure that 
when a process does crash, it can restart as quickly 
as possible. This may seem straightforward, but a 
number of factors can slow down a component’s 
restart. For example, if the system is configured 
to allow core dumps and the process is using a 
very significant amount of memory, it may take 
considerable time to write the core dump to disk, 
which could block a new version of the process from 
starting. Completely disabling core dumps carries its 
own risks for debugging unexpected problems, so 
another approach must be taken.

More commonly, it is possible for a component 
to take an unusually long time to restart if it has 
accumulated a large amount of configuration it must 
process before offering its service. Measuring and 
managing restart time to ensure it remains fast is one 
of many effective strategies for the component-level 
resilience that Akamai practices.

Another common but highly impactful failure mode 
is when a component produces a faulty output that 
is sent to another component. This may be the 
result of a logic bug, a hardware failure, or some 
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other unanticipated fault. One technique we use to 
mitigate this problem is deploying an output checker, 
which reads the component’s proposed output 
and runs a set of sanity checks before allowing it 
to be published. This includes looking for internal 
incoherence or inconsistency in the meaningfulness 
of the output, such as data that doesn’t make sense 
within the context of other systems components (e.g., 
nonexistent ID numbers), or unexpectedly large values 
or magnitudes of change in the output. In some 
cases, we use similar techniques implemented as 
input checkers on downstream receiving components.

Finally, a component that crashes can employ clever 
resilience strategies if it believes it has crashed 
due to input from some other part of the system. 
For example, let’s say a component receives a new 
configuration, crashes, then restarts and crashes 
again within a short time span. Given the recent 
arrival of a new configuration and the two crashes 
shortly thereafter, there’s good reason to suspect 
the configuration is the cause of the crash. If the 
system dynamics of the component allow for it, that 
component can automatically revert to using the 
previous version of the configuration. We design the 
component’s behavior to exit this mode when a new, 
good configuration is available.

Fault isolation

When all else fails, a critical backstop for achieving 
fault tolerance is fault isolation. In the event of some 
unaccounted-for failures, it’s important to locally 
contain the impact of the problem. Akamai uses 
a sophisticated version of fault isolation on our 
platform to meet the dual requirements of scaling 
automatically to serve high-demand, high-traffic 
events while also protecting the broader platform 
from unexpected problems with that traffic.

As an example, imagine that a site on our platform 
with moderate traffic trips some type of error 

condition. Perhaps something specific to that site’s 
configuration combined with a bug in our edge server 
software only exhibits itself when the site publishes 
a new piece of content. Despite the techniques we 
use for component-level resilience, for the purposes 
of this example, let’s assume all other safeties 
have failed, and the edge server crashes and does 
not recover automatically. In our normal mode of 
operation, another server in the local cluster would 
immediately take over for the failed server, as 
described earlier. However, in this circumstance, that 
may be problematic. The second server may also 
crash because of the same bug. The traffic would 
continue to shift to one new server after another, a 
cascading failure eventually crashing all servers in the 
local cluster.

One simple solution to this problem would be to 
enforce a hard limit that no single site can use more 
than a small fraction of a given cluster. But that would 
severely limit the ability to automatically scale to use 
all the resources necessary to deliver content to end 
users from the best possible node. Instead, Akamai 
employs a more sophisticated resilience design that 
detects if unexpected server crashes are attributed to 
a particular site’s traffic. Under normal conditions, we 
allow a site to scale to use all necessary resources, 
but if error conditions are detected, scaling is halted 
and the damage is limited in scope.

Automation and self-healing

A key principle that comes into play in Akamai’s 
resilience strategy is a design philosophy of 
automation and self-healing. With a network of 
over 350,000 servers, it will never be possible for 
operations staff to react to problems manually fast 
enough. It is imperative, therefore, that problems are 
detected and mitigated automatically. Automated 
mitigation is the only way to scale, and it is the only 
way to react quickly enough.
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Automation and self-healing principles are pervasive 
at all layers of Akamai’s technology stack. As 
previously mentioned, machines in a cluster 
automatically take over for other machines in the 
event of a failure. In fact, a “down edge server” alert is 
the lowest priority alert in our system. We know it will 
happen often, but it’s not a high priority because the 
system will accommodate it seamlessly — repairing 
the machine can happen on a longer time scale.

At the same time, if an entire cluster of servers or even 
an entire data center goes offline, our system reroutes 
traffic quickly and automatically to the next best 
data center, without any operator intervention. This is 
discussed in greater detail in the following section.

Graceful degradation, traffic control,  
and scalability

Because anything that can go wrong, will go wrong, 
it is imperative to design for failure modes that allow 
for a graceful degradation in service. It’s often the 
case that, with extra forethought and design, various 
failure modes can be made to allow for “good enough” 
service to continue instead of complete unavailability.

This is a design principle Akamai employs in many 
different contexts. One example is our approach to 
traffic mapping, by which we mean the assignment 
of end users to clusters around the world. Our traffic 
mapping system also clearly illustrates resilience 
principles related to control mechanisms and 
scalability, so all three will be discussed here.

Akamai’s traffic mapping system is designed to direct 
each new end-user request for content to one of 
our global clusters, based on real-time performance 

measurements of internet traffic conditions among 
users and clusters. This is designed to ensure that 
users get the best possible performance. The cluster 
physically closest to a user is not always the one with 
the best performance when the internet is suffering 
from certain kinds of connectivity problems.

But this performance-based mapping mechanism 
also plays an important role in the resilience principle 
of graceful degradation. If a cluster goes offline or is 
overloaded, we can direct end users to the next-best-
performing cluster, likely in the very same city as the 
first one. If even more capacity is required — such 
as during a very high-demand, live sports event — 
we can continue step-by-step, employing additional 
nearby resources and continuing to give very good 
performance when optimal is not possible. Our traffic 
mapping system’s DNS responses have 20-second 
time to lives (TTLs are the settings that tell the client’s 
DNS resolver how long to cache an answer before 
requesting a new one). This gives us the ability to 
react quickly, whether when redirecting users in the 
event of an increased demand in traffic, or in response 
to a data center that unexpectedly goes offline.1

There are two additional benefits to the fine-grained 
control and load feedback that Akamai’s traffic 
mapping provides. First, it allows us to make very 
efficient use of resources. Servers, clusters, and 
network links can be driven to use nearly their full 
capacity because we have the capability to direct each 
next request to another resource if one becomes fully 
loaded. Second, by addressing clusters directly, we 
have a great deal of control over the direction of traffic 
— far more than through the use of technologies like 
Anycast, which have occasionally been the cause of 
severe disruptions to services.

1 Note that because extra DNS lookups can impact performance, an additional component of our system is designed to ensure that users are 
making their low-TTL DNS lookups from nameserver software that is also mapped to be very close to the end users, with a selection of servers 
made available for both performance and resilience.
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Change safety

As a matter of practice, many significant failure 
modes exhibit themselves as the result of a change 
that carries unintended consequences. A classic 
example is pushing a configuration update to a 
software component that triggers a bug in the 
software or causes the software to crash. Given the 
pace of innovation on the internet, it’s not feasible to 
ensure all software will be free of bugs. So, how do 
we achieve resilience beyond the component-level 
resiliencies previously discussed?

One of the most effective methods Akamai employs is 
performing staged rollouts of new configurations, with 
automated testing between stages. An automated 
configuration rollout and safety system can help 
manage this. The parameters of staged rollouts will 
vary based on the risk profile of the configuration 
channel in question, but let’s talk through one 
example:

• When a new configuration is ready to deploy, it is 
first sent to a nonproduction testing system. If the 
software on that system crashes or experiences an 
error, the automated deployment system halts rollout 
and alerts an operator.

• If the nonproduction testing passes, the 
configuration may then be sent to a small number of 
production servers. The selected servers should be 
relevant to the configuration changes being made, 
but small enough in scope so that a fault will be 
of limited impact to the overall correct functioning 
of the service. If automated testing detects the 
target servers exhibiting faults or not operating 
correctly, the automated deployment system halts 
the deployment of this configuration and alerts an 
operator to the situation.

• If the target servers in the previous stages continue 
to look healthy, rollout can continue in a staged 
manner until the configuration is fully deployed with 
a pace and staging appropriate for the needs of the 
configuration and components in question.

For some manual processes, such as actions 
taken by operations staff, we use a “what if” tool 
that determines if an action will have unsafe 
consequences, alert the operator to this fact, and 
potentially require an override to continue

Layering of safeties

While the principles of resilience described throughout 
this document are all valuable independently, their 
effectiveness increases exponentially when they 
are combined. The power of layered safety is so 
significant that it is itself a resilience principle.

Talking through the simple example of deploying a 
configuration that would trigger a bad bug in software 
illustrates this clearly:

• When the configuration is pushed that would 
trigger the bug, it is first automatically tested on a 
nonproduction machine. If the bug exhibits there, 
rollout halts and the failure is averted.

• If the live testing does not exhibit the problem, the 
configuration is rolled out in stages to the production 
network, where additional testing will halt rollout if 
the bug presents itself.

• If the bug still has not triggered by the time the 
configuration has reached global deployment 
(perhaps because the bug is dependent on a 
transient condition), the defensive posture of the 
component’s resilience kicks in. The software may 
crash, but if it restarts quickly it still has the chance 
to provide good service.
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• If the bug trips a second time not long after the 
first, and the component’s system dynamics can 
support it, the component decides two crashes in 
a row may be the result of a bad configuration and 
automatically reverts to using a previous version of 
the configuration.

• At the same time, if the transient condition 
necessary to trip the bug was based on a request 
to a particular site, the fault isolation system will 
prevent the traffic mapping system from spreading 
this site’s traffic to too many servers.

• That’s important for keeping the “good” traffic 
working correctly, but also gives the traffic mapping 
system the opportunity to send some of the good 
traffic to additional resources if local capacity is 
degraded due to the failures.

Visibility

Having good visibility into systems status would 
seem an obvious operational requirement for resilient 
systems. Good telemetry allows operators to detect 
problematic conditions and repair them before they 
cause an interruption in service. However, there are 
subtleties in how to provide the right kind of visibility 
for when things go wrong. Standard techniques for 
logging warnings or errors may alert an operator to 
a problem, but they are often woefully insufficient 
for answering the next question about the scope or 
nature of the problem, or how to diagnose it.

Take, for example, a server that sends a warning 
message about approaching overload when it is at 
85% capacity utilization of some resource. If half 
the machines on the network log that message, 
it suggests there’s a looming problem, but then 
what? The operator only has more questions the log 
messages can’t answer. Is the rest of the network 
nearly at 85% load or far below it? Does the majority 
of the load on those servers have something in 

common, like a single customer, traffic type, software 
version, or configuration? Is there anything else 
unusual happening on those servers, but not others? 
Unfortunately, the rigidity of logging can’t help us 
answer these questions.

For this reason, Akamai built a telemetry system 
that gives far greater flexibility, especially in the face 
of complex and unexpected problems. With this 
system, the software developer of a component can 
make arbitrary underlying data about the component 
available via an API. Operators can query for any of 
this information remotely as needed. What’s more, 
the interface to this system is SQL, with the telemetry 
system itself aggregating together data from servers 
and components across the platform, on demand. 
The result is that an operator can write an ad-hoc SQL 
statement as if against an enormous database of 
systems information, but that’s actually the live status 
of the network.

It’s hard to overstate the power of such a system. 
Imagine what would happen in the scenario described 
above in which a component reports high load. 
Instead of being hard-coded to log at 85%, the 
component simply makes its current load percentage 
available via telemetry. The alerting system queries 
the entire network for the component’s current load 
and triggers an alert that too many servers are at 
85% load. But now the operator can easily answer 
all the other questions above. By issuing new 
queries, they can determine the load on the other 
components, understand the distribution of load 
among the ones that did alert, and combine tables 
with other information such as customer traffic levels, 
configuration settings, software version, and more.

Security model

The focus of this document has largely been on 
the design of techniques for resilience in the event 
of faults rather than on the software design itself. 
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However, the security design of software and systems 
carries an outsized importance in overall systems 
resilience and so deserves attention.

A number of relatively common security practices 
are highly detrimental to systems resilience. One 
example is overreliance on IP access control lists 
(ACLs) as a primary control for access or systems 
communications. While an IP ACL is a worthwhile 
addition to other security measures, it is imperative 
that it not be the only control. Strong cryptographic 
methods, employed both for encryption and 
authentication, must be the first line of defense 
across all communications channels.

Another common security practice that carries 
unnecessary risk is overly broad access privileges. 
Take, for example, an operator who requires 
access to a global network of servers to perform 
maintenance tasks or to debug problems. At the 
beginning of the worker’s shift, there’s no way to 
know in advance which servers the operator will 
need access to, so in many environments the 
operator is simply given access to all systems. 
This, unfortunately, presents risks to resilience and 
safety. If a single operator’s key can access the 
entire network simultaneously, it’s an attack vector 
for taking the service offline. It’s even a risk from a 
nonmalicious perspective; A bug in a tool used by an 
operator may now accidentally perform a damaging 
action on the entire network of servers.

To help mitigate this risk, Akamai uses an access 
broker system for maintenance and debugging 
access to servers. While an operator may need 
access to any server from a given collection, there 
is no reason during their shift that they will require 
access to all servers. Instead of giving direct access 
to servers, the operator authenticates to the brokerage 
system, which then mediates access to the server. In 
this way, an operator may be given access to a limited 
fraction of the servers on the network, and other 
controls may be imposed as well.

Operational resilience

Although we strive for as much automation and self-
healing as possible, it is necessary to have human 
operators managing the problems that software 
and systems can’t. The goal of the resilience design 
principles discussed is to allow the system to 
continue operating seamlessly during the time a 
human operator needs to take corrective action on an 
underlying problem.

Akamai has a number of staffed operations centers 
located around the globe. Operators receive alerts 
(usually written as SQL against the telemetry system 
described previously), with a configured severity and 
linked procedure as an entry point into a workflow 
to resolve the issue. Systems have a clear list of 
contacts for escalations when standard procedures 
can’t resolve a problem.

Operations staff are also responsible for installing new 
software on the network. This, as with configuration 
deployment, is performed in stages, although striped 
differently across the network. Prior to each install 
phase, we employ techniques to divert traffic away 
from the machines to be installed. Post-install 
monitoring assesses the health and performance 
of parts of the network running the new version of 
software and compares it with the previous version.

Finally, while the resilience design principles and 
operational practices described in this document are 
highly effective at providing a reliable service, Akamai 
also has a robust incident management framework 
in place for when things go wrong. Solid incident 
management is itself a critical resilience technique, 
as it can truly make the difference between an outage 
that lasts minutes and one that lasts an hour.
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Conclusion

Building a highly reliable service on top of the 
internet’s “best effort” infrastructure is a complex 
challenge — one that Akamai has embraced for 
more than 20 years. In this paper, we’ve explained 
a number of the most important design principles 
for providing a highly resilient service on Akamai’s 
globally distributed platform. Although the principles 
are described here at a high level, Akamai’s team 
of experts in systems architecture, distributed 

algorithms, software design, security technologies, 
and operational practices focus on the details to 
ensure the robustness of our technologies and their 
application throughout our platform.

Through ongoing innovation and investment, Akamai is 
continually improving and refining our resilience strategy 
and tactics to keep pace with changes in technology, 
content and traffic dynamics, and our customers’ 
evolving needs. We are committed to providing the 
highly reliable platform and products that empower our 
customers to deliver digital experiences that delight their 
customers and drive their business growth.

Akamai powers and protects life online. Leading companies worldwide choose Akamai to build, deliver, and secure their digital experiences 
— helping billions of people live, work, and play every day. With the world’s most distributed compute platform — from cloud to edge — we 
make it easy for customers to develop and run applications, while we keep experiences closer to users and threats farther away. Learn 
more about Akamai’s security, compute, and delivery solutions at akamai.com and akamai.com/blog, or follow Akamai Technologies on 
Twitter and LinkedIn. Published 08/22.
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