
State of the Internet
Volume 09 | Issue 04

State of the Internet
Volume 09 | Issue 04

Ransomware
 on the Move
APJ Snapshot

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04

Table of contents

03 Key insights of the report

08 Methodology

09 Credits

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04 2023 | 03

Key insights of the report

The APJ Snapshot is a companion piece to our larger ransomware SOTI report,

Ransomware on the Move: Evolving Exploitation Techniques and the Active

Pursuit of Zero-Days (available in English only). Please refer to that report for

detailed analyses of ransomware groups’ attack trends, methodology, and

techniques; a description of the stages of attacks and the corresponding

solutions and recommendations to safeguard your organization; and our

research methodologies.

Overview

Ransomware continues to wreak havoc on organizations and claim more victims

as adversaries continue to evolve and shift their attack techniques, introduce new

extortion methods, take advantage of an expanding attack surface, and capitalize

on security budget constraints. The impact of these dangerous trends is reflected

in the ransomware groups that dominate the landscape and in their growing

success. In APJ, this is exemplified by a 50% growth in victim companies

between Q4 2021 and Q4 2022, with a giant leap of 204% in the victim count

year-over-year when comparing Q1 2022 with Q1 2023.

In this APJ Snapshot, we share additional insights for better defense and risk

management of this growing concern, including:

• During the period of October 2021 through May 2023, LockBit dominated the

ransomware scene, with CL0P rising as it aggressively exploited vulnerabilities.

A shift in attack techniques, from phishing to the rampant abuse of zero-day

and one-day vulnerabilities, led to the giant leap in victim counts.

• Consistent with findings worldwide, manufacturing was the vertical with the

highest number of victim organizations, followed by business services.

• The majority of ransomware victims were smaller organizations with revenue

of up to US$50 million. However, the very largest organizations were also

under attack.

https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04

LockBit dominates ransomware group activity

Despite a rising awareness of ransomware and an abundance of tools and best

practices available to combat this threat, growth in victim companies in APJ

increased by 50% between Q4 2021 and Q4 2022, with a giant leap of 204% in the

victim count year-over-year when comparing Q1 2022 with Q1 2023. Consistent

with data findings in our global report, between the period of October 1, 2021,

and May 31, 2023, LockBit was responsible for the majority of attacks on victims,

accounting for 51% of attacks in APJ, with ALPHV and CL0P rounding out the top

three (APJ Figure 1).

APJ: Top 3 Ransomware Groups by Victim Count
October 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

APJ: Top 3 Ransomware Groups by Victim Count
Oct 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

33%

0

50

100

150

200

LockBit ALPHV CL0P

APJ Fig. 1: The majority of the victim organizations of ransomware
attacks in APJ were hit by LockBit, ALPHV, and CL0P

Quarterly analysis

Despite the prevalence of LockBit, CL0P ransomware was quite active from Q4

2021 through Q2 2022 and spiked in Q1 2023, elevating it to the position of third

most active ransomware group in APJ and gaining ground on ALPHV (APJ

Figure 2). CL0P’s surge in activity can be attributed to its exploitation of a variety

of zero-day vulnerabilities as a point of entry. A shift in attack techniques over the

past six months, from phishing to the rampant abuse of vulnerabilities, is leading

to the giant leap in victim counts. That said, only partial data was available for

Q2 2023* at the time of this report, and as of May 31, 2023, CL0P registered no

attacks, which could indicate Q1 2023 was an anomaly. However, it is important to

note that in June 2023, as a result of the exploitation of the MOVEit vulnerability,

CL0P claimed more victims, and a handful of companies in APJ are on that list.

2023 | 04

*Q2 2023 is not a full quarter as the data has a May 31, 2023, cutoff.

https://securityboulevard.com/2023/06/what-we-know-about-the-moveit-exploit-and-ransomware-attacks/

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04

APJ: Top 3 Ransomware Groups by Victim Count
Quarterly: October 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s
APJ: Top 3 Ransomware Groups by Victim Count
Quarterly: October 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

0

20

40

60

80

Q4
2021

Q1
2022

Q2
2022

Q3
2022

Q4
2022

Q1
2023

Q2*
2023

LockBit ALPHV CL0P

APJ Fig. 2: A comparison of quarterly victim counts among the top three
ransomware groups in APJ: LockBit, ALPHV, and CL0P

Critical industries at risk

The top five critical industries at risk of ransomware in APJ are manufacturing,

business services, construction, retail, and energy (APJ Figure 3). This follows the

general worldwide trend, with the exception of the fifth position, which, on a

global basis, is held by education. This is also largely consistent with last year’s

global ransomware report where manufacturing and business services also held

the top two positions. During that time, they were victimized by Conti

ransomware. After Conti’s disappearance, LockBit filled the spot that Conti left.

We also see overlap with the top affected industries in our previous DNS report,

Attack Superhighway: A Deep Dive on Malicious DNS Traffic, reflecting a link

between malicious command and control (C2) traffic and ransomware attacks.

APJ: Top 5 Industries by Ransomware Group Victim Count
October 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

APJ: Top 5 Industries by Ransomware Group Victim Count
Oct 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

0

25

50

75

100

Manufacturing ConstructionBusiness Services Energy, Utilities
& Telecommunications

Retail

APJ Fig. 3: Manufacturing has the highest number of victim organizations
in ransomware attacks in APJ

2023 | 05

*Q2 2023 is not a full quarter as the data has a May 31, 2023, cutoff.

https://www.akamai.com/resources/research-paper/akamai-ransomware-threat-report
https://www.akamai.com/lp/soti/attack-superhighway-a-deep-dive-on-malicious-dns-traffic

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04

It is also important to note that LockBit does not discriminate: It is the most

prevalent ransomware in each industry in APJ, accounting for 60% of attacks in

manufacturing, 55.8% in business services, 57.7% in construction, and 45.8% in

retail. Even in the energy sector, in which LockBit accounts for 28.6% of attacks,

the remaining attacks are spread across several different ransomware groups,

with no group accounting for more than 14.3%.

Ransomware groups focus on ROI

Every organization, regardless of company size or revenue, is at risk of

ransomware attacks. However, mirroring the worldwide trend, the data shows

that attackers are successful in launching attacks against smaller organizations

in APJ (APJ Figure 4). According to a report by the Cyber Security Agency of

Singapore, most of the reported ransomware victims in Singapore were small

and medium-sized businesses in the manufacturing and retail sectors. We

surmise that smaller companies have limited security resources to combat the

hazards of ransomware, which makes them more vulnerable and easier to

infiltrate, and they have the capacity to pay the ransom. However, the largest

enterprises are also under attack, with research showing the higher the revenue

of the affected organization, the bigger the ransom payment.

APJ: Ransomware Group Revenue Range Victim Count
October 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

APJ: Ransomware Group Revenue Range Victim Count
Oct 1, 2021 – May 31, 2023

Vi
ct

im
 T

ot
al

s

0

50

100

150

200

$0 - $50M $501M - $1B$51M - $250M Greater than $1B$251M - $500M

APJ Fig. 4: The majority of ransomware victims in APJ are in organizations
with reported revenue of up to US$50 million

package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan
bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan:
workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"),
10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.Handle-
Func("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case
<- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan
ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: wor-
kerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan:
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type Con-
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Tar-
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); status-
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool);
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: worker-
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10,
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout:
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMes-
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive =
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan:
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type Con-
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Tar-
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); status-
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool);
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: worker-
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10,
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout:
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMes-
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive =
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan:
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type Con-
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Tar-
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); status-
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool);
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: worker-
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10,
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout:
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMes-
sage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive =
true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=
strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued
for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan:
if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type Con-
trolMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case
respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan
bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Tar-
get: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/status",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); status-
PollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package
main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool);
workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: worker-
Active = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10,
64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-
tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result { fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout:
fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMes-

Every organization,

regardless of

company size or

revenue, is at risk of

ransomware attacks.

2023 | 06

https://www.csa.gov.sg/Tips-Resource/publications/2023/singapore-cyber-landscape-2022
https://assets.sophos.com/X24WTUEQ/at/c949g7693gsnjh9rb9gr8/sophos-state-of-ransomware-2023-wp.pdf

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04

APJ snapshot conclusion

Ransomware continues to wreak havoc on organizations. Globally and regionally,

governments are forming a united front to address the threat and highlight

techniques that can aid security defenders in protecting their organizations.

A statement issued by the Foreign Ministers of Australia, India, and Japan,

and the Secretary of State of the United States exemplifies the urgency to

mitigate the impact of ransomware on national security and on all industry

sectors and reinforces a commitment to building programs aimed at helping

organizations enhance their cybersecurity capacity and build resilience. Earlier

this year, the International Counter Ransomware Task Force, chaired by Australia,

was established to drive greater collaboration among a coalition of 36 member

states and the E.U. to counter the spread and impact of ransomware, including

the sharing of cyberthreat intelligence. In October 2022, Singapore also formed

its first inter-agency task force consisting of multiple government agencies to

help defend businesses and critical infrastructure against ever-growing

ransomware attacks.

As regulators put initiatives and policies in place to strengthen cybersecurity

standards, it is important to understand the reporting requirements in your

area so that you can include them in your playbook/crisis management plan,

and be aware of the opportunities you have to mitigate risk by leveraging a

multilayered defense.

For more information,
please refer to the
global ransomware
SOTI report,
Ransomware on
the Move: Evolving
Exploitation
Techniques and
the Active Pursuit
of Zero-Days.

2023 | 07

https://www.state.gov/quad-foreign-ministers-statement-on-ransomware/
https://www.straitstimes.com/tech/singapore-forms-inter-agency-task-force-to-tackle-rising-ransomware-threats
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move
https://www.akamai.com/resources/state-of-the-internet/ransomware-on-the-move

State of the Internet | Ransomware — APJ Snapshot: Volume 09, Issue 04 2023 | 08State of the Internet | APJ Snapshot: Volume 09, Issue 04

Methodology

Ransomware data

The ransomware data used throughout this report was collected from the leak

sites of approximately 90 different ransomware groups. It is typical of these

groups to report details of their attacks, such as time stamps, victim names, and

victim domains. It is important to note that these reports are subject to whatever

each ransomware group desires to publicize. The successfulness of these

reported attacks was not included in this research.

This research focused instead on the reported victims. For each analysis, the

number of unique victims within each grouping was measured. This victim data

was joined with data obtained from ZoomInfo to provide additional details about

each victim, such as location, revenue range, and industry.

All data was within the 20-month time frame of October 1, 2021, through

May 31, 2023.

Akamai powers and protects life online. Leading companies worldwide choose Akamai to build, deliver, and

secure their digital experiences — helping billions of people live, work, and play every day. Akamai Connected

Cloud, a massively distributed edge and cloud platform, puts apps and experiences closer to users and keeps

threats farther away. Learn more about Akamai’s cloud computing, security, and content delivery solutions at

akamai.com and akamai.com/blog, or follow Akamai Technologies on Twitter and LinkedIn. Published 08/23.

Credits

Editorial and writing
Ori David Charlotte Pelliccia
Badette Tribbey Lance Rhodes

Review and subject matter contribution
Moshe Cohen Richard Meeus
Shiran Guez Steve Winterfeld
Ophir Harpaz Maxim Zavodchik
Reuben Koh

Data analysis
Chelsea Tuttle

Marketing and publishing
Kimberly Gomez
Georgina Morales Hampe
Shivangi Sahu

More State of the
Internet/Security
Read back issues and watch for
upcoming releases of Akamai’s
acclaimed State of the Internet/
Security reports. akamai.com/soti

More Akamai
threat research
Stay updated with the latest threat
intelligence analyses, security
reports,and cybersecurity research.
akamai.com/security-research

Akamai data from
this report
View high-quality versions of the
graphs and charts referenced in this
report. These images are free to use
and reference, provided Akamai is duly
credited as a source and the Akamai
logo is retained. akamai.com/sotidata

More on Akamai solutions
To learn more about Akamai’s
solutions for ransomware, visit
our Security Solutions page.

2023 | 9

https://www.akamai.com/
https://www.akamai.com/blog
https://twitter.com/akamai
https://www.linkedin.com/company/akamai-technologies
https://www.akamai.com/soti
https://www.akamai.com/security-research
https://www.akamai.com/site/en/documents/state-of-the-internet/ransomware-on-the-move.zip
https://www.akamai.com/solutions/security

