
1Akamai Brand Permissions Request Form _V1.4

Akamai Brand Permission Request Form

FILLABLE FORM, * REQUIRED

NAME OF PERSON REQUESTING*

TITLE OR POSITION*

COMPANY OR ORGANIZATION*

EMAIL*

RELATIONSHIP TO AKAMAI (IF ANY)

AKAMAI TRADEMARK AND/OR LOGO
REQUESTED FOR USE*
(PLEASE MARK ALL THAT APPLY)

Akamai Logo Images / Photography

Akamai Logo with Tagline

Akamai Name
(within written copy)

Other (please describe
in “Additional Information”)

INTENDED USE IN MEDIA*
(PLEASE MARK ALL THAT APPLY)

Use Case Website

Print Ad / Book / BrochureSponsorship

Other (please describe
in “Additional Information”)

Commercial Advertisement /
Film / Motion Graphics

PUBLICATION OR RELEASE DATE*

DISTRIBUTION GEOGRAPHY*

ADDITIONAL INFORMATION
(IF ANY, OR MARKED “OTHER” ABOVE)

package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan

ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case

respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan:

workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=

strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target:

r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-

tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result

{ fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import (

"fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);worker-

CompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPoll-

Channel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}};

func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":");

r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"),

If you would like to use Akamai's trademark, logos, or brand features, please review the Akamai Brand Guide
for Third-Party Use, complete the fillable form below, and submit this Brand Permission Request Form to
brand@akamai.com.

Please note that submitting this request does not grant you permission to use any Akamai trademarks, logos,
or brand features. We will respond to your request for permission at our earliest opportunity.

https://www.akamai.com/site/en/documents/akamai/akamai-brand-guide-for-third-party-use.pdf
https://www.akamai.com/site/en/documents/akamai/akamai-brand-guide-for-third-party-use.pdf
mailto:brand%40akamai.com?subject=

2Akamai Brand Permissions Request Form _V1.4

Terms and Conditions
With completion and delivery of this form, your agree to the following:

In consideration for Akamai’s review of your request to use an Akamai logo, trademark, trade name or other
item indicated above (“Akamai IP”) and with completion and signing/submission of this form, you agree to
the following:

• By submitting this form on behalf of a company or other organization, you represent that you have the
authority to bind that company or organization and its affiliates to this Permission Form.

• You will use the trademark only in the manner, for the purpose, and in the media described above.

• You won’t use the trademark in a manner that suggests your product or service is provided under the
trademark or by Akamai.

• You won’t use the trademark with objectionable material (for example, material that is defamatory,
scandalous, or illegal).

• You won’t use the trademark to disparage Akamai or any of our employees.

• You acknowledge that Akamai owns its trademark, logo, and brand features and agree that you will
not challenge or attempt to challenge them, combine it with any other trademark, or use it with any
other word, design, logo, or other elements.

• You acknowledge that you have reviewed the Akamai Brand Guidelines for Third-Party Use and which
you, your company, and/or organization agree will govern any use of the Akamai brand trademark
pursuant to this request.

AKAMAI USE ONLY

DECISION

REASON, IF REJECTED

REVIEWER

DATE

Approved Rejected

PERMISSION FOR AKAMAI* Does Akamai currently have permission to use the requesting company or
organization’s logo and/or trademark (e.g., for customer reference, partner
marketing, co-marketing, etc.)?

Yes No

If NO, as part of approving this request to use the Akamai logo,
Akamai requests reciprocal permission to use the requesting company/
organization’s logo and trademark for our future marketing efforts.

Please check here if you are willing to provide this reciprocal
permission. The requesting company/organization should then
contact brand@akamai.com to engage Akamai with their own
organization’s brand approval process.

package main; import ("fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan

ControlMessage);workerCompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case

respChan := <- statusPollChannel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan:

workerActive = status; }}}; func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens :=

strings.Split(r.Host, ":"); r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target:

r.FormValue("target"), Count: count}; cc <- msg; fmt.Fprintf(w, "Control message issued for Target %s, count %d", html.EscapeString(r.FormValue("target")), count); }); http.HandleFunc("/sta-

tus",func(w http.ResponseWriter, r *http.Request) { reqChan := make(chan bool); statusPollChannel <- reqChan;timeout := time.After(time.Second); select { case result := <- reqChan: if result

{ fmt.Fprint(w, "ACTIVE"); } else { fmt.Fprint(w, "INACTIVE"); }; return; case <- timeout: fmt.Fprint(w, "TIMEOUT");}}); log.Fatal(http.ListenAndServe(":1337", nil)); };package main; import (

"fmt"; "html"; "log"; "net/http"; "strconv"; "strings"; "time"); type ControlMessage struct { Target string; Count int64; }; func main() { controlChannel := make(chan ControlMessage);worker-

CompleteChan := make(chan bool); statusPollChannel := make(chan chan bool); workerActive := false;go admin(controlChannel, statusPollChannel); for { select { case respChan := <- statusPoll-

Channel: respChan <- workerActive; case msg := <-controlChannel: workerActive = true; go doStuff(msg, workerCompleteChan); case status := <- workerCompleteChan: workerActive = status; }}};

func admin(cc chan ControlMessage, statusPollChannel chan chan bool) {http.HandleFunc("/admin", func(w http.ResponseWriter, r *http.Request) { hostTokens := strings.Split(r.Host, ":");

r.ParseForm(); count, err := strconv.ParseInt(r.FormValue("count"), 10, 64); if err != nil { fmt.Fprintf(w, err.Error()); return; }; msg := ControlMessage{Target: r.FormValue("target"),

mailto:brand%40akamai.com?subject=

	Akamai logo: Off
	Use Case: Off
	Akamai Logo 7: Off
	Images / Photography: Off
	Akamai Logo with Tagline: Off
	Other 1: Off
	Sponsorship: Off
	Print Ad / Book / Brochure: Off
	Akamai Name: Off
	Commercial Advertisement / Film / Motion Graphics: Off
	Other 2: Off
	Name of Person Requesting:
	Title or Position:
	Company or Organization:
	Email:
	Relationship to Akamai (if any):
	Publication or Release Date:
	Distribution Geography:
	Additional Information:
	Approved : Off
	Rejected: Off
	Permission for Akamai - Yes: Off
	Permission for Akamai - Yes, Reciprocal Permission: Off
	Permission for Akamai - No: Off
	Other 6: Off
	Other 7: Off
	Reason, if rejected:
	Reviewer:
	Date:

